张峰(Feng Zhang)
张峰 职称:教授/博士生导师 邮箱:fengzhang@fudan.edu.cn 研究兴趣 主要集中在大气辐射与卫星气象学、气象大数据与人工智能、数值模式物理过程参数化 教育背景 学士学位(2006年),物理学,浙江师范大学 硕士学位(2010年),大气科学,中国气象科学研究院 博士学位(2013年),气象学,中国气象科学研究院和中科院大学联合培养 研究经历 2020-至今,复旦大学大气与海洋科学系/大气科学研究院,教授,博导 2023-至今,复旦大学信息科学与工程学院(兼职),教授,博导 2014-2019,南京信息工程大学大气科学学院,历任校聘教授,教授,博导 2018-2019,德国宇航中心遥感技术研究所,洪堡学者 2016-2018,日本东北大学,日本学术振兴会(JSPS)海外特别研究员 2010-2014,中国气象局上海台风研究所,历任实研、助研 承担课题 2023.01-2025.12: 国家自然科学基金委优秀青年基金项目(4222506),大气辐射模式,项目负责人; 2021.12-2024.11: 国家重点研发计划“台风变分辨率预报模式的关键物理过程研究与示范应用”第一课题(2021YFC3000801),适用于台风变分辨率预报的云宏观特征与辐射过程参数化研究,课题负责人; 2021.01-2024.12: 国家自然科学基金面上项目(42075125),热红外多通道联合反演冰云微物理特性研究,项目负责人; 2020.11-2022.10: 2020年度上海市浦江人才计划(20PJ1401800),基于机器学习方法的可见光和热红外多通道联合反演冰云微物理特性研究,项目负责人; 2020.11-2023.10: 上海市科委(612020029),气象大数据与人工智能交叉研究项目,项目负责人; 2020.02-2023.02: 霍英东教育基金会第十七届高等院校青年教师基金(171012),云辐射参数化研究,项目负责人; 2018.12-2021.12: 国家重点研发计划“多尺度全球大气数值模式物理过程和资料同化系统研究”第二课题(2018YFC1507002),大气辐射过程参数化研究,课题负责人; 2017.1-2020.12: 国家自然科学基金面上项目(41675003),适用于云微物理特性连续变化的辐射传输新理论研究及其在气候模式模拟中的应用,项目负责人; 2014.1-2016.12: 国家自然科学基金青年项目(41305004),四流累加辐射传输理论研究及其在气候模式中的应用,项目负责人; 学术兼职 国际辐射委员会委员兼任工作组组长、IAMAS-CN青年委员会委员 《高原气象》、《光学学报》青年编委,中国激光杂志社青年编委、《苏州科技大学学报》编委 荣誉和奖励 2022年,第18届留日中国人优秀青年研究者奖; 2019年,德国“洪堡学者”; 2016年,日本学术振兴会海外特别研究员; 2020年,上海市浦江人才计划; 2019年,第七届清华大学—浪潮集团计算地球科学青年人才奖; 2018年,获国际摄影测量与遥感协会大气环境遥感工作组授予的大气环境遥感与协同分析研讨会青年学者奖; 2018年,江苏省“333工程”中青年科学技术带头人; 发表论文 91.Global aerosol-type classification using a new hybrid algorithm and Aerosol Robotic Network data. Atmospheric Chemistry and Physics, 24(8), 5025–5045. https://doi.org/10.5194/acp-24-5025-2024, 通讯作者 90.Cloud Classification by machine learning for Geostationary Radiation Imager,Transactions on Geoscience and Remote Sensing(2024),DOI:10.1109/TGRS.2024.3353373.通讯作者. 89.FuXi: a cascade machine learning forecasting system for 15-day global weather forecast,npj Climate and Atmospheric Science (2023),6:190,合作作者. 88.基于生成对抗网络和卫星数据的云图临近预报.应用气象学报 (2023), 34(2): 220-233, Doi:10.11898/1001-7313.20230208, 合作作者. 87.Parameterization of optical properties for liquid cloud droplets containing black carbon based on neural network, Optics Express (2023), 31, 40124-40141, Doi:https://doi.org/10.1364/OE.503825, 通讯作者. 86. A Hybrid Algorithm for Dust Aerosol Detection: Integrating Forward Radiative Transfer Simulations and Machine Learning, IEEE Transactions on Geoscience and Remote Sensing, (2023), 61:1-15, 4104715, 通讯作者. 85.云垂直重叠特性与风切变强度的参数化关系构建,地球物理学进展(2023),38(3):1000-1012, Doi: 10.6038/pg2023GG0093, 通讯作者. 84. A neural network-based scale-adaptive cloud-fraction scheme for GCMs. Journal of Advances in Modeling Earth Systems (2023), 15, e2022MS003415. Doi:doi/10.1029/2022MS003415, 合作作者. 83.Transfer-Learning-Based Approach to Retrieve the Cloud Properties Using Diverse Remote Sensing Datasets, IEEE Transactions on Geoscience and Remote Sensing (2023), 61:1-10, 2023, Doi: 10.1109/TGRS.2023.3318374, 通讯作者. 82. The deep-learning-based fast efficient nighttime retrieval of thermodynamic phase from Himawari-8 AHI measurements. Geophysical Research Letters (2023), 50, e2022GL100901. Doi: doi.org/10.1029/2022GL100901, 通讯作者. 81. Integrated efficient radiative transfer model named Dayu for simulating the imager measurements in cloudy atmospheres. Optics Express (2023), 31(10): 15256-15288. DOI: https://doi.org/10.1364/OE.482762, 通讯作者. 80. Optimized Alternate Mapping Correlated K-Distribution Method for Atmospheric Longwave Radiative Transfer. Journal of Advances in Modeling Earth Systems (2023), 15(5), e2022MS003419: 1-17. DOI: https://doi.org/10.1029/2022MS003419, 通讯作者. 79. Cloud Identification and Properties Retrieval of the Fengyun-4A Satellite Using a ResUnet Model. IEEE Transactions on Geoscience and Remote Sensing (2023), 61: 1-18. DOI:https://doi.org/10.1109/TGRS.2023.3252023, 通讯作者. 78. Estimate of daytime single-layer cloud base height from advanced baseline imager measurements. Remote Sensing of Environment (2022), 274(112970): 1-15. DOI: https://doi.org/10.1016/j.rse.2022.112970, 合作作者. 77. Estimating daily ground-level NO2 concentrations over China based on TROPOMI observations and machine learning approach. Atmospheric Environment (2022), 289, 119310: 1-12.DOI: https://doi.org/10.1016/j.atmosenv.2022.119310, 通讯作者. 76. Polarized Discrete Ordinate Adding Approximation for Infrared and Microwave Radiative Transfer. Journal of Quantitative Spectroscopy and Radiative Transfer (2022), 293, 108368: 1-14. DOI: https://doi.org/10.1016/j.jqsrt.2022.108368, 通讯作者. 75. Cloud Detection and ClassificationAlgorithms for Himawari-8 Imager Measurements Based on Deep Learning. IEEE Transactions on Geoscience and Remote Sensing (2022), 60,4107117: 1-17. DOI: https://doi.org/10.1109/TGRS.2022.3153129, 通讯作者. 74. A broadband infrared radiative transfer scheme including the effect related to vertically inhomogeneous microphysical properties inside water clouds. Journal of Quantitative Spectroscopy and Radiative Transfer (2022), 285, 108160:1-33.DOI: https://doi.org/ 10.1016/j.jqsrt.2022.108160, 合作作者. 73.人工智能与物联网在大气科学领域中的应用. 地球物理学进展 (2022), 37(1): 94-109. DOI: https://doi.org/10.6038/pg2022EE0521, 通讯作者. 72. High Spatiotemporal Resolution PM2.5 Concentration Estimation with Machine Learning Algorithm: A Case Study for Wildfire in California.Remote Sensing (2022), 14(7): 1-17. DOI: https://doi.org/10.3390/rs14071635, 合作作者. 71. El Niño Modoki can be mostly predicted more than 10 years ahead of time. Scientific Reports (2021), 11:17860:1-14. DOI: https://doi.org/10.1038/s41598-021-97111-y, 合作作者. 70. Classification of Weather Phenomenon From Images by Using Deep Convolutional Neural Network. Earth and Space Science(2021), 8(5),e2020EA001604:1-9. DOI: https://doi.org/ 10.1029/2020EA001604, 通讯作者. 69. Ensemble Meteorological Cloud Classification Meets Internet of Dependable and Controllable Things. IEEE Internet of Things Journal (2021),8: 3323-3330, 合作作者. 68.Zhou Zecheng, Feng Zhang*, Haixia Xiao, Fuchang Wang, Xin Hong, Kun Wu, and Jinglin Zhang, 2021: A Novel Ground-Based Cloud Image Segmentation Method by Using Deep Transfer Learning. IEEE Geoscience and Remote Sensing Letters (2021),19: 1-5, 通讯作者. 67. Atmospheric moisture shapes increasing tropical cyclone precipitation in southern China over the past four decades. Environmental Research Letters (2021), 16, 034004: 1-6, 合作作者. 66. Estimating Rainfall with Multi-Resource Data over East Asia Based on Machine Learning.Remote Sensing (2021),13, 16: 3332-3361, 合作作者. 65. Community Integrated Earth System Model (CIESM): Description and Evaluation. Journal of Advances in Modeling Earth Systems (2020), 12, e2019MS002036:1-29. DOI: https://doi.org/10.1029/2019MS002036, 合作作者. 64. Efficient design of the realization scheme of the invariant imbedding (IIM) T-matrix light scattering model for atmospheric nonspherical particles. Journal of Quantitative Spectroscopy and Radiative Transfer (2020) ,251,106999: 1-17., 合作作者. 63. Larger Sensitivity of Arctic Precipitation Phase to Aerosol than Greenhouse Gas Forcing. Geophysical Research Letters (2020), 47,e2020GL090452: 1-11. DOI: https://doi.org/ 10.1029/2020GL090452, 合作作者. 62. Possible mechanisms of summer cirrus clouds over the Tibetan Plateau. Atmospheric Chemistry and Physics (2020), 20(20): 11799–11808., 第一作者. 61. The semi-diurnal cycle of deep convective systems over Eastern China and its surrounding seas in summer based on an automatic tracking algorithm. Climate Dynamics (2020), 56:357-379, 通讯作者. 60.Long-term trends in Arctic surface temperature and potential causality over the last 100years.Climate Dynamics (2020),55:1443–1456, 通讯作者. 59. Efficient radiative transfer model for thermal infrared brightness temperature simulation in cloudy atmospheres. Optics Express (2020), 28: 25730-25749, 通讯作者. 58. Best Water Vapor Information Layer of Himawari-8-Based Water Vapor Bands over East Asia.Sensors (2020), 20: 2394-2410, 通讯作者. 57. Future drought in the dry lands of Asia under the 1.5ºC and 2.0ºC warming scenarios. Earth Future (2020), 8(6), e2019EF001337:1-13, 通讯作者. 56. Impact of δ-Four-Stream Radiative Transfer Scheme on global climate model simulation.Journal of Quantitative Spectroscopy and Radiative Transfer (2020), 243,106800:1-13, 通讯作者. 55.Potential impacts of future reduced aerosols on internal dynamics characteristics of precipitation based on model simulations over southern China.Physica A: Statistical Mechanics and its Applications (2020),545, 123808:1-13, 通讯作者. 54. The δ -six-stream spherical harmonic expansion adding method for solar radiative transfer. Journal of Quantitative Spectroscopy and Radiative Transfer (2020),243, 106818:1-17, 通讯作者. 53. A novel multiple small-angle scattering framework for interpreting anisotropic polarization pattern of lidar returns from water clouds.Journal of Quantitative Spectroscopy and Radiative Transfer (2020), 242.106794:1-12,合作作者. 52. Connections between Stratospheric Ozone Concentrations over the Arctic and Sea Surface Temperatures in the North Pacific.Journal of Geophysical Research: Atmospheres (2020),(4):1-18, 合作作者. 51. Future haze events in Beijing,China: When climate warms by 1.5 and 2.0oC. International Journal of Climatology (2019),.40(8): 3689-3700, 合作作者. 50.An improved Eddington approximation method for irradiance calculation in a vertical inhomogeneous medium. Journal of Quantitative Spectroscopy and Radiative Transfer (2019), 226:40-50, 通讯作者. 49.Classification of ice crystal habits observed from airborne Cloud Particle Imager by deep transfer learning.Earth and Space Science (2019), 6,1877-1886, 通讯作者. 48. Multi-layer solar radiative transfer considering the vertical variation of inherent microphysical properties of clouds.Optics Express (2019),27(20):A1569-A1590, 通讯作者. 47. The Impact of Various HITRAN Molecular Spectroscopic Databases on Infrared Radiative Transfer Simulation. Journal of Quantitative Spectroscopy & Raidiatve Transfer (2019), 234: 55-63, 通讯作者. 46. Alternate Mapping Correlated k-Distribution Method for Infrared Radiative Transfer Forward Simulation. Remote Sensing (2019),11(9): 994-1006, 第一作者. 45. Comparisons of δ-two-stream and δ-four-stream radiative transfer schemes in RRTMG for solar spectra.Scientific Online Letters on the Atmosphere (2019),15:87-93, 通讯作者. 44.Accounting for Several Infrared Radiation Processes in Climate Models.Journal of Climate(2019),32: 4602-4620, 合作作者. 43. Simulation of daily precipitation from CMIP5 in the Qinghai–Tibet Plateau.Scientific Online Letters on the Atmosphere (2019),15: 68-74, 第一作者. 42. Development of a Rapid Retrieval Method for Cloud Optical Thickness and Cloud-top Height Using Himawari-8 Infrared Measurements.Scientific Online Letters on the Atmosphere (2019),15: 57-61, 合作作者. 41. MAX-DOAS measurements of tropospheric NO2 and HCHO in Nanjing and a comparison to ozone monitoring instrumen to bservations. Atmospheric Chemistry and Physics (2019),19: 10051-10071, 合作作者. 40.Assessment of Two-stream Approximations in a Climate Model.Journal of Quantitative Spectroscopy and Radiative Transfer (2019),225: 25–34, 通讯作者. 39. Analysis of sea-salt aerosol size distributions in radiative transfer. Journal of Aerosol Science (2019), 129: 71-86, 通讯作者. 38. Theoretical extension of universal forward and backward Monte Carlo radiative transfer modeling for passive and active polarization observation simulations.Journal of Quantitative Spectroscopy and Radiative Transfer (2019), 235: 81 - 94., 合作作者. 37. COMPARISON OF THREE TYPES OF AEROSOL PRODUCTS DURING 2015–2017 IN CHINA.Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci. (2018), XLII-3/W5: 47-52, 通讯作者. 36.飞机尾迹云识别及其辐射强迫的研究进展. 大气科学学报 (2018), 41(5): 577-581, 通讯作者. 35. Radiative transfer in the region with solar and infrared spectra overlap.Journal of Quantitative Spectroscopy and Radiative Transfer (2018),219: 366-378, 第一作者. 34. CloudNet: Ground-based Cloud Classification with Deep Convolutional Neural Network. Geophysical Research Letter (2018),45: 8665–8672, 通讯作者. 33. The standard perturbation method for infrared radiative transfer in a vertically internally inhomogeneous scattering medium. Journal of Quantitative Spectroscopy and Radiative Transfer (2018),213: 149-158, 通讯作者. 32. A new radiative transfer method for solar radiation in a vertically internally inhomogeneous medium. Journal of the Atmospheric Sciences (2018),75: 41-55, 第一作者. 31.北半球极区平流层冬季12月与1-2月气候变化形势的对比.大气科学学报 (2018), 41(3): 416-422, 合作作者. 30.太阳准周期变化对北半球夏季平流层加热率的影响.大气科学学报 (2018), 40(6): 729-736, 合作作者. 29. Explicit Solutions of the Mixing Rules with Three-Component Inclusions.Journal of Quantitative Spectroscopy and Radiative Transfer (2017), 207: 78-82, 合作作者. 28. A simple parameterization of the maximum ozone heating rate height. Infrared Physics & Technology (2017),87: 104-112. DOI:https://doi.org/10.1016/j.infrared.2017.09.002, 第一作者. 27. Comparison of Chebyshev and Legendre polynomial expansion of phase function of cloud and aerosol particles. Advances in Meteorology(2017),1835169: 1-10, 第一作者. 26.Double-delta-function adjustment in thermal radiative transfer. Infrared Physics & Technology (2017),86: 139-146, 通讯作者. 25. Causality of the drought in the southwestern United States based on observations.Journal of Climate (2017),30 (13): 4891-4896, 第一作者. 24. Variational iteration method for infrared radiative transfer in a scattering medium.Journal of the Atmospheric Sciences, 74: 419-430, 第一作者. 23.A new parameterization of canopy radiative transfer for land surface radiation models. Advance in Atmospheric Sciences (2017), 34: 613–622, 第一作者. 22. Accounting for Gaussian quadrature in four-stream radiative transfer algorithms.Journal of Quantitative Spectroscopy and Radiative Transfer (2017), 192: 1–13, 第一作者. 21. Reconstruction of driving forces from nonstationary time series including stationary regions and application to climate change. Physic A: Statistical Mechanics and its Applications (2017), 473: 3197–3204, 第一作者. 20. Simultaneously simulating the scattering properties of nonspherical aerosol particles with different sizes by the MRTD scattering model. Optics Express (2017), 25(15): 17872-17891, 合作作者. 19.Light scattering computation model for nonspherical aerosol particles based on multi-resolution time-domain scheme: model development and validation.Optics Express (2017), 25: 1463-1486, 合作作者. 18.热带地区出射长波辐射的长程持续性研究.热带气象学报 (2017), 33(3): 426-432., 通讯作者. 17. Analytical infrared delta-four-stream adding method from invariance principle.Journal of the Atmospheric Sciences (2016), 73: 4171–4188, 第一作者. 16. A note on double Henyey–Greenstein phase function. Journal of Quantitative Spectroscopy and Radiative Transfer (2016),184: 40-43, 第一作者. 15. Adding method of delta-four-stream spherical harmonic expansion approximation for infrared radiative transfer parameterization. Infrared Physics & Technology (2016), 78: 254-262, 通讯作者. 14.大气粒子散射相函数的参数化方案比较及其改进. 气象学报 (2016), 74: 784-795,通讯作者. 13. Causality of global warming seen from observations: a scale analysis of driving force of the surface air temperature time series in the Northern Hemisphere. Climate Dynamics (2016), 46:3197-3204, 合作作者. 12. The color of biomass burning aerosols in the atmosphere.Scientific Reports (2016), 6: 28267-28275, 合作作者. 11. Determination of direct normal irradiance including circumsolar radiation in climate/NWP models.Quarterly Journal of the Royal Meteorological Society (2016), 142: 2591-2598, 合作作者. 10. Impact of four-stream radiative transfer algorithm on aerosol direct radiative effect and forcing.International Journal of Climatology (2015), 35: 4318-4328, 合作作者. 9. Analytical inversion of the absorption spectrum to determine non-spherical-particle size distribution.Journal of Quantitative Spectroscopy and Radiative Transfer (2014), 149: 128–137, 合作作者. 8. he dissipation structure of extratropical cyclones. Journal of Atmospheric Sciences (2014), 71: 69–88, 合作作者. 7.利用 CFSR 资料分析近30年全球云量分布及变化. 气象 (2014), 40(5) : 555-561,合作作者. 6. Doubling-adding method for delta-four-stream spherical harmonicexpansion approximation in radiative transfer parameterization.Journal of the Atmospheric Sciences (2013), 70: 3084-3101, 第一作者. 5. Analytical delta-four-stream doubling-adding method for radiative transfer parameterizations. Journal of the Atmospherc Sciences (2013), 70: 794-808, 第一作者. 4.一种计算非均质大气双向反射比的新方法.物理学报 (2012),61(18), 184212: 213-218, 第一作者. 3.一种处理漫射因子的新方法. 物理学报 (2011), 60(1), 010702: 151-154, 第一作者. 2. Two- and four-Stream combination approximations for computation of diffuse actinic fluxes,Journal of the Atmospheric Sciences (2010), 67, 3238–3252, 合作作者. 1. Influence of mass of cone spring on oscillatory period,Journal of Sound and Vibration (2006),, 295, 331-341, 第一作者. 专利 1.适用于云物理特性连续变化的辐射传输方法,发明专利,专利号:ZL20171083636.4,排名第一 2.一种冰晶图片的自动分类方法,发明专利,专利号:ZL201910115964.3,排名第一 3.一种冰晶图片的自动分割方法 ,发明专利,专利号:ZL 2021 1 0227920.7 ,排名第一 4.一种AMCKD模式中等效气体吸收系数的最优化计算方法 ,发明专利,ZL 2022 1 0477213.8 ,排名第一 学生培养 出站博士后: 2023年出站:付浩阳(出站去向:浙江师范大学任教);王夫常(中国气象局上海台风研究所联合培养,出站去向:上海市气象局);张璟(中国气象局上海台风研究所联合培养,出站去向:中国气象局上海台风研究所) 在站博士后: 王晶晶(拟入职 上海理工大学),李雯雯(拟入职 上海理工大学),刘佳 博士: 2019年毕业,吴琨(南信大招生,毕业去向:南信大任教) 2020年毕业,石怡宁(南信大招生,毕业去向:中国气象科学研究院),杨全(南信大招生,毕业去向:中国气象科学研究院南京分院) 2022年毕业,李雯雯(南信大招生,毕业去向:复旦大学博士后);林瀚(南信大招生,毕业去向:福州大学任教) 其他情况说明 本课题组长期招收博士后,每年招收大气科学、电子科学与技术、电子信息专业的硕士和博士研究生。课题组学术氛围浓厚,欢迎大气科学、电子科学与技术、物理学、数学、计算机等及相关专业背景的同学报考本课题组的硕士和博士研究生。 #以上信息由本人提供,更新时间:2024/06/16 |