王蕾(Lei Wang) 王蕾 教授、博士生导师 wanglei_ias@fudan.edu.cn
天气、气候预报与可预报性;平流层动力学;大尺度大气环流;北极海冰变率与可预报性;气候-化学耦合;气候变率与极端事件;混沌动力学
学士学位(1999年7月),大气科学,北京大学 硕士学位(2002年7月),气象学,北京大学 硕士学位(2004年8月),大气物理,多伦多大学 博士学位(2010年11月),大气物理,多伦多大学
2011年 1月— 2013年8月,博士后,约翰霍普金斯大学地球与行星科学系 2013年9月 — 2015年8月,博士后,哥伦比亚大学气候与社会国际研究所 2015年8月 — 2017年11月,副研究员,哥伦比亚大学拉蒙特-多尔蒂地球观测所 2017年12月 — 2022年11月,青年研究员,复旦大学大气与海洋科学系/大气科学研究院 2017年12月 — 2023年6月,兼职副研究员,哥伦比亚大学拉蒙特-多尔蒂地球观测所 2022年12月 — 至今,教授,复旦大学大气与海洋科学系/大气科学研究院
(1) 国家自然科学基金委员会, 面上项目, 42375055, 春季平流层过程对北半球夏季气候的影响, 2024-01-01 至 2027-12-31,主持 (2) 国家科学技术部, 国家重点研发计划全球变化及应对专项课题, 2020YFA0608802, 西太平洋多尺度海气过程与 ENSO 变异和可预报性的 联系, 2020-12 至 2025-11,主持 (3) XX部, XXXX项目, 次季节-季节可预报性, 2019-12 至 2022-12,主持 (4) 国家自然科学基金委员会, 面上项目, 41875047, 平流层环流在北极海冰对北半球冬季气候影响中的作用, 2019-01-01 至 2022-12-31,主持 (5) 国家科学技术部, 国家重点研发计划全球变化及应对专项课题, 2019YFA0607002, 北极快速变化对中纬度极端天气形成的影响机制研究, 2019-11 至 2024-10, 参与 (6) 国家自然科学基金委员会, 重大研究计划, 91837206, 青藏高原积雪年代际变率归因与全球气候效应研究, 2019-01-01 至 2022-12-31, 参与
2023年— 至今,动力气象学/大气动力学基础,本科 2020年— 至今,大气与海洋科学的行业创新与创业,本科 2020年— 2023年,数值天气预报,本科 2020年— 2022年,大气科学模拟和预测研究进展,博士 2019年— 2020年,大气科学漫谈,本科 2019年— 2021年,大气科学专业英语,硕士&博士 2018年— 至今,大气科学理论研究进展,博士
2023—至今Journal of Climate副编辑(associate editor) 2020—至今国际气象学和大气科学协会(IAMAS)中国委员会秘书长 2021—2024中国海洋研究委员会(SCOR)青年委员 2020—至今Advances in Atmospheric Sciences编辑(editor) 2011年—至今,期刊审稿人:Atmospheric Chemistry and Physics, Atmospheric and Oceanic Science Letters, Atmospheric Science Letters, Advances in Atmospheric Sciences, Climate Dynamics, Geophysical Research Letters, Journal of Climate, Journal of Geophysical Research Atmospheres, Journal of Geophysical Research Oceans, Journal of Hydrometeorology, Journal of Meteorological Research, Mathematical Problems in Engineering, NPJ Climate and Atmospheric Science, Ocean Dynamics, Proceedings of Royal Society A, Quarterly Journal of the Royal Meteorological Society, SCIENCE CHINA Earth Sciences, Scientific Reports, Theoretical and Applied Climatology, Weather and Climate Dynamics.
2022年3月,Reviewer Award,Journal of Meteorological Research 2022年1月,2021年度研究生教育贡献奖,复旦大学大气与海洋科学系 2020年4月,Top Downloaded Paper 2018-2019,学术论文Large Impacts, Past and Future, of Ozone‐Depleting Substances on Brewer‐Dobson Circulation Trends: A Multimodel Assessment,Journal of Geophysical Research: Atmospheres 2018年4月,学术论文The impact of ozone depleting substances on tropical upwelling, as revealed by the absence of lower stratospheric cooling since the late 1990s,高被引用论文(Highly Cited Paper),基本科学指标数据库(ESI) 2017年2月,学术论文A robust empirical seasonal prediction of winter NAO and surface climate,2017年度Scientific Reports地球科学百佳论文之一(Top 100 Scientific Reports Earth science papers in 2017),Nature Research
2024年,庞达(共同导师:方向辉副教授),“复旦大学优秀毕业生” 2023年,孙婉莹,第七届地球系统科学大会“优秀学生展板奖” 2022年,马旋,博士后创新人才支持计划(简称“博新计划”) 2019年,马旋,国家奖学金
(本人名称加粗,通讯作者加*号,代表性论文) Dunstone, N., D. M. Smith, S. C. Hardiman, L. Hermanson, S. Ineson, G. Kay, C. F. Li, J. F. Lockwood, A. A. Scaife, H. Thornton, M. F. Ting, & L. Wang (2023). Skilful predictions of the summer north atlantic oscillation. Communications Earth & Environment, 4(1), 409. Wang, F., L. Wang*, T. Dai, and Y. Han, 2023: Interplay between Boreal Summer Intraseasonal Oscillation and Southern Hemisphere Stratospheric Polar Vortex Warming. Journal of Climate, 36(19), 6839-6853. Pang D., X. H. Fang*, and L. Wang, 2023: Importance of realistic zonal currents in depicting the evolution of tropical central Pacific sea surface temperature. Environ. Res. Lett., DOI 10.1088/1748-9326/ad0b21. Sun, W.Y., and L. Wang*, 2023: Diagnosing observed extratropical stationary wave changes in boreal winter. Environ. Res. Lett. 18 114014, DOI 10.1088/1748-9326/acfb99. 黄雯菁,王蕾*. 2023. 北半球中高纬度阻塞对东亚寒潮影响过程中平流层和对流层的相互作用. 气象学报,81(2):1-17. Ma, X., and L. Wang*, 2023: The role of ozone depletion in the lack of cooling in the Antarctic upper stratosphere during austral winter. Advances in Atmospheric Sciences, 40(4), 619−633, doi: 10.1007/s00376-022-2047-9. Published: 08 February 2023 王林, 王蕾, 张洋. 2023. 国家自然科学基金大气科学学科二级申请代码下设研究方向与关键词解读:D0504大气动力学. 大气科学, 47(1): 125−131 doi: 10.3878/j.issn.1006-9895.2212.22304 Ma, X., L. Wang*, D. Smith, L. Hermanson, R. Eade, N. Dunstone, S. C. Hardiman, and J. Zhang (2022). ENSO and QBO modulation of the relationship between Arctic sea ice loss and Eurasian winter climate. Environmental Research Letters, 2022, 17, 124016, DOI 10.1088/1748-9326/aca4e9 Ma, X., F. Xie, X. Chen, L. Wang, Yang, G. Identifying a Leading Predictor of Arctic Stratospheric Ozone for April Precipitation in Eastern North America. Remote Sens. 2022, 14(19), 5040; https://doi.org/10.3390/rs14195040 Wang F., R. Huang, L. Wang* (2022), Response of Tropical Convection over the Western Pacific to Stratospheric Polar Vortex during Boreal Winter. International Journal of Climatology, DOI:10.1002/joc.7869. Liu, S., Q. Wu*, Y. Yao, S. Schroeder, and L. Wang, (2022), Impacts of Autumn‐Winter Tibetan Plateau Snow Anomalies on North Atlantic‐Europe and Arctic Climate. Journal of Geophysical Research: Atmospheres, 127(12), e2021JD035791. Wang. L., and M. F. Ting, (2022), Stratosphere-Troposphere Coupling Leading to Extended Seasonal Predictability of Summer North Atlantic Oscillation and Boreal Climate, Geophysical Research Letters, DOI:10.1029/2021GL096362. Meng, L., J. Liu*, D. W. Tarasick, W. J. Randel*, A. K. Steiner, H. Wilhelmsen, L. Wang, & L. Haimberger, (2021), Continuous rise of the tropopause in the Northern Hemisphere over 1980-2020. Science advances, 7(45), eabi8065. Wang, F., and L. Wang* (2021), An exploration of the connection between quasi-biennial oscillation and Madden-Julian oscillation. Environ. Res. Lett., 16(11), 114021. Chen, R., G. Dai, R. Liu, and L. Wang* (2021), Seasonal Influence of the Atmosphere and Ocean on the fall Sea Ice Extent in the Barents–Kara Seas. J. Geophys. Res. Atmos., e2021JD035144. Dai, G., M. Mu*, C. Li, Z. Han, & L. Wang (2021). Evaluation of the Forecast Performance for Extreme Cold Events in East Asia With Subseasonal‐to‐Seasonal Data Sets From ECMWF. Journal of Geophysical Research: Atmospheres, 126(1), 2020JD033860. Dai, G., M. Mu*, & L. Wang (2021). The influence of sudden Arctic sea-ice thinning on North Atlantic oscillation events. Atmosphere-Ocean, 59(1), 39-52. Wang. L., S. C. Hardiman, P. E. Bett, R. Comer, C. Kent, and A. A. Scaife (2020), What chance of a sudden stratospheric warming in the southern hemisphere? Environ. Res. Lett., 15, 104038 Liu, S., Q. Wu*, S. R. Schroeder, Y. Yao, Y. Zhang, Wu, T., L. Wang & Hu, H. (2020). Near-global atmospheric responses to observed springtime Tibetan Plateau snow anomalies. Journal of Climate, 33(5), 1691-1706. Polvani, L.M., L. Wang*, M. Abalos, N. Butchart, M. Chipperfield, M. Deushi, S. Dhomse, P. Jöckel, D. Kinnison, M. Michou, O. Morgenstern, L. Oman, D. Plummer, and K. Stone (2019), Large impacts, past and future, of ozone depleting substances on Brewer-Dobson circulation trends: A multi-model assessment. J. Geophys. Res. Atmos., 124(13), 6669-6680. (*Corresponding author) Wang. L., and A. W. Robertson, Subseasonal Predictability over the United States assessed from Two Operational Ensemble Prediction Systems. Climate Dynamics, 52(9-10), 5861-5875, doi:10.1007/s00382-018-4484-9. Wang. L., X. J. Yuan, and C. Li, Subseasonal Forecast of Arctic Sea Ice Concentration via Statistical Approaches. Climate Dynamics, 52(7-8), 4953-4971, doi:10.1007/s00382-018-4426-6. Wang. L., M. F. Ting, and P. J. Kushner (2017), A robust empirical seasonal prediction of winter NAO and surface climate. Scientific Reports, doi:10.1038/s41598-017-00353-y. (Top 100 Scientific Reports Earth science papers in 2017) Polvani, L.M., L. Wang, D. W. Waugh, and V. Aquila (2017), The impact of ozone depleting substances on tropical upwelling, as revealed by the absence of lower stratospheric cooling since the late 1990s. Journal of Climate, DOI: 10.1175/JCLI-D-16-0532.1. (ESI Highly Cited Paper) Yuan, X., D. Chen, C. Li and L. Wang (2016), Arctic Sea Ice Seasonal Prediction by a Linear Markov Model. Journal of Climate, doi: 10.1175/JCLI-D-15-0858.1 Wang. L., X. J. Yuan, M. F. Ting, and C. Li (2016), Predicting Summer Arctic Sea Ice Concentration Intra-Seasonal Variability Using a Vector Auto-Regressive Model. Journal of Climate, 29 (4), 1529–1543. Wang. L., M. Ting, D. Chapman, D. E. Lee, N. Henderson, and X. Yuan (2016), Prediction of northern summer low-frequency circulation using a high-order vector auto-regressive model. Climate Dynamics, 46 (3), 693-709, doi: 10.1007/s00382-015-2607-0. Wang. L., and D. W. Waugh (2015), Seasonality in future tropical lower stratospheric temperature trends. J. Geophys. Res. Atmos., 120, 980–991, doi:10.1002/2014JD022090. Stolarski, R. S., D. W. Waugh, L. Wang, L. D. Oman, A. R. Douglass, and P. A. Newman (2014), Seasonal variation of ozone in the tropical lower stratosphere: Southern tropics are different from northern tropics. J. Geophys. Res. Atmos., 119, 6196–6206, doi:10.1002/2013JD021294. Wang, L., P. J. Kushner, and D. W. Waugh (2013), Southern hemisphere stationary wave response to changes of ozone and GHGs. J. Climate, 26, 10205–10217, doi: 10.1175/JCLI-D-13-00160.1 Garfinkel, C. I., D. W. Waugh, L. D. Oman, L. Wang and M. M. Hurwitz (2013), Temperature trends in the tropical upper troposphere and lower stratosphere: Connections with sea surface temperatures and implications for water vapor and ozone, J. Geophys. Res. Atmos., 118, 9658–9672, doi:10.1002/jgrd.50772. Wang. L., and D. W. Waugh (2012), Chemistry-climate model simulations of recent trends in lower stratospheric temperatures and stratospheric residual circulation. J. Geophys. Res., 117, D09109, doi:10.1029/2011JD017130. Wang, L., and P. J. Kushner (2011), Diagnosing the stratosphere-troposphere stationary wave response to climate change in a general circulation model, J. Geophys. Res., 116, D16113, doi:10.1029/2010JD015473. Butchart, N., A. J. Charlton-Perez, I. Cionni, S. C. Hardiman, P. H. Haynes, K. Krüger, P. J. Kushner, P. A. Newman, S. M. Osprey, J. Perlwitz, M. Sigmond, L. Wang, H. Akiyoshi, J. Austin, S. Bekki, A. Baumgartner, P. Braesicke, C. Brühl, M. Chippereld, M. Dameris, S. Dhomse, V. Eyring, R. Garcia, H. Garny, P. Jöckel, J.-F. Lamarque, M. Marchand, M. Michou, O. Morgenstern, T. Nakamura, S. Pawson, D. Plummer, J. Pyle, E. Rozanov, J. Scinocca, T. G. Shepherd, K. Shibata, D. Smale, H. Teyssèdre, W. Tian, D. W. Waugh, and Y. Yamashita (2011), Multimodel climate and variability of the stratosphere. J. Geophys. Res., 116, D05102, doi:10.1029/2010JD014995. Wang, L., and P.J. Kushner (2010), Interpreting stationary wave nonlinearity in barotropic dynamics. J. Atmos. Sci., 67(7): 2240-2250. DOI: 10.1175/2010JAS3332.1. 王蕾, 康杜鹃, 李晓东 (2002), 多模态模型及其在气候分析中的应用. 北京大学学报(自然科学版) 2002 Vol.38 (1): 83-89.
1,Butchart, N.*, A.J. Charlton-Perez, I. Cionni, S. C. Hardiman, K. Krüger, P. Kushner, P. Newman, S. M. Osprey, J. Perlwitz, F. Sassi, M. Sigmond, L. Wang (2010), Stratospheric dynamics, in SPARC CCMVal, SPARC CCMVal Report on the Evaluation of Chemistry-Climate Models, edited by V. Eyring, T. G. Shepherd, and D. W. Waugh, pp. 109–148, SPARC Rep. 5, World Meteorological Organization, Geneva, Switzerland. #以上信息由本人提供,更新时间:2024/06/18 |