管理入口 内部文档
温之平(Zhiping Wen)


温之平

特聘教授/博士生导师

zpwen@fudan.edu.cn

                                                  电话:+86-21+31248801



研究兴趣

主要从事气候动力学研究。研究方向包括:热带大气环流、大尺度海-气和陆-气相互作用、亚洲季风、台风气候学、极端天气气候等。


教育背景

学士学位(1984年),气象学,杭州大学(现浙江大学)

硕士学位(1990年),天气动力学,中山大学

博士学位(2006年),气象学,中国科学院大气物理研究所


工作经历

20188-至今,特聘教授,复旦大学大气与海洋科学系

20099-20187月,主任,中山大学季风与环境研究中心

20007-201510月,系主任,中山大学大气科学系

19979-20006月,副系主任,中山大学大气科学系

19907-20187月,助教、讲师、副教授、教授,中山大学大气科学系

19847-19878月,助教,江西农业大学气象教研室


教学经历

19932-20176月,热带气象学,本科生,中山大学

20032-20176月,热带大气动力学,研究生,中山大学

20192-至今,热带气象学,本科生,复旦大学


学术兼职

曾兼任国际气象学和大气科学协会中国委员会(CNC-IAMAS)委员、全球能量与水分循环计划中国委员会(CNC-GEWEX)委员;现兼任世界气候研究计划中国国家委员会(CNC-WCRP)委员、中国气象学会理事、中国气象学会热带气象委员会副主任委员、中国气象学会气候学委员会委员、中国气象学会动力气象学委员会委员、中国气象学统计气象学与气候预测委员会委员、中国气象学会气象教育与培训委员会委员、上海市气象学会副理事长;《中国科学•地球科学》(中英文版)、《Advances in Atmospheric Sciences》、《Atmosphere》、《大气科学》、《大气科学学报》、《高原气象》等杂志编委。


承担的主要课题

(一)国家自然科学基金委项目

1)重点项目:对流层高层热带东风急流中心位置的变化及机制(42030601),300.00万元,主持,20211-202512月。

2)面上项目:夏季低频东亚-太平洋遥相关型的特征、形成和维持机制及影响(41875087),62万元,主持,20191-202212

3)重点项目:全球变暖背景下南海夏季风系统年代变化及其机制(41530530),260万元,主持,20161-202012月。

4)面上项目:春季欧亚中高纬大气环流异常对南海夏季风爆发的影响(41175076),80万元,主持,20121-201512月。

5)重点项目:华南干旱成因及预测理论研究(40730951),经费160万元,主持,20081-201112月。

6)面上项目:南海夏季风建立迟早年际变化的机制研究,经费27万元,主持20031-200512月。


(二)国家科技部项目

1)国家重点研发计划(地球系统与全球变化专项)项目:北极海--气系统和热带海-气系统的相互作用及其与全球变暖的联系(2022YFF0801700),经费2350万元,主持,202212-202711月。

2)国家重点研发计划(全球变化及应对重点专项)课题:全球变暖背景下东亚夏季风系统的变化特征(2016YFA0600601),562.5万元,主持,20167-20216月。

3)国家重点基础研究发展规划(973项目)课题:东亚季风湿润区和西太平洋的能量和水分循环的观测试验与分析研究(2009CB421404),经费363.0万元,主持,200811-20139月。


近期发表的主要论文

(本人名字加粗,通讯作者加*号)


(一)热带大气环流

1Yao Y., Y. Guo, Z. Wen, and S. Huang, 2023: Vertical structure of variabilities in the tropical easterly jet and associated factors, Atmospheric and Oceanic Science Letters, 16, https://doi.org/10.1016/j.aosl.2023.100400.

2Zhu Y., R. Chen, Q. Song, X. Li, Y. Guo, and Z. Wen*, 2023:An Investigation of the Maintenance Mechanisms of the Quasi-biweekly Pacific-Japan Teleconnection. Climate Dynamics, https://doi.org/10.1007/s00382-023-08908-2.

3Liu S., X. Fu, Z. Wen, and P. Zhang. 2023:Diverse controlling mechanisms and teleconnections of three distinctive MJO types. Climate Dynamics, 61, 789-812.

4Ye J., Y. Guo, Z. Wen, P. Zhao, and S. Huang. 2023: Longitudinal oscillation mode of the tropical easterly jet in June: role of precipitation anomalies in Asian monsoon region. Climate Dynamics, 60, 1543–1558. https://doi.org/10.1007/s00382-022-06391-1.

5Zhan X., Z. Wen, Y. Guo and S. Huang. 2023: Interannual variability of the double easterly jets over the tropical western Pacific and their effect on tropical cyclone genesis. International Journal of Climatology. 43(5), 2050–2061. https://doi.org/10.1002/joc.7961.

6Li Y., S. Huang, and Z. Wen*, 2022: The influence of the stratospheric quasi-biennial oscillation on the tropical easterly jet over the Maritime Continent. Geophysical Research Letters, 49, e2022GL098940. https://doi.org/10.1029/2022GL098940.

7Jiang X., Y. Guo, and Z. Wen. 2022: Relationship between cross-equatorial flows over the Bay of Bengal and Australia in boreal summer: Role of tropical diabatic heating. Atmospheric and Oceanic Science Letters, 15, 100100. https://doi.org/10.1016/j.aosl.2021.100100.

8Li Y., and Z. Wen*. 2022. Influence of tropical convective enhancement in Pacific on the trend of stratospheric sudden warmings in Northern Hemisphere. Climate Dynamics, 58:2541-2555https://doi.org/10.1007/s00382-021-06021-2.

9Li Y., and Z. Wen*, 2021: The influence of interdecadal changes in boreal winter teleconnections around the 1980s on planetary waves and stratospheric sudden warmings. Journal of Geophysical Research: Atmospheres, 126, e2021JD035341https://doi.org/10.1029/2021JD035341.

10Chen R., Z. Wen, R. Lu, and W. Liu, 2021: Interdecadal changes in the interannual variability of the summer temperature over Northeast Asia, Journal of Climate, 34, 8361-8376. https://doi.org/10.1175/JCLI-D-21-0115.1.

11Jiang X., Y. Guo, and Z. Wen. 2021: Role of Tropical Diabatic Heating on the Out-of-phase Mode of the Cross-equatorial Flows over the Asian-Australian Monsoon Region in Boreal Summer. Atmospheric and Oceanic Sciences Letters, https://doi.org/10.1016/j.aosl.2021.100100.

12Huang S., B. Wang, Z. Wen*, and Z. Chen, 2021: Enhanced Tropical Eastern Indian Ocean Rainfall Breaks down the Tropical Easterly Jet-Indian Rainfall Relationship. Journal of Climate, 34. 3039-3048, https://doi.org/10.1175/JCLI-D-20-0631.1.

13Zhu Y., Z. Wen*, Y. Guo, R. Chen, X. Li, and Y. Qiao, 2020: The Characteristics and Possible Growth Mechanisms of the Quasi-Biweekly Pacific–Japan Teleconnection in Boreal Summer. Climate Dynamics. 55, 3363-3380, https://doi.org/10.1007/s00382-020-05448-3.

14Huang S., X. Li, and Z. Wen, 2020: Characteristics and Possible Sources of the intraseasonal South Asian Jet Wave Train in Boreal Winter. Journal of climate. 33(24), 10523–10537, https://doi.org/10.1175/JCLI-D-20-0125.1.

15Guo Y., Z. Wen*, Y. Tan, and X. Li, 2020: Plausible causes of the interdecadal change of the North Pacific teleconnection pattern in boreal spring around the late 1990s. Climate Dynamics, 55(5), 1427-1442, https://doi.org/10.1007/s00382-020-05334-y.

16Huang S., B. Wang, and Z. Wen, 2020: Dramatic Weakening of the Tropical Easterly Jet Projected by CMIP6 Models. Journal of Climate. 33, 8439-8455, https://doi.org/10.1175/JCLI-D-19-1002.1.

17Huang S., Z. Wen*, Z. Chen, X. Li, R. Chen and Y. Guo, 2019: Interdecadal change in the relationship between the tropical easterly jet and tropical sea surface temperature anomalies in boreal summer. Climate Dynamics. 53, 2119–2131, https://doi.org/10.1007/s00382-019-04801-5.

18Wang J., Z. Wen*, R. Wu and A. Lin, 2017: The impact of tropical intraseasonal oscillation on the summer rainfall increase over southern China around 1992/1993. Climate Dynamics, 49: 1847-1863, https://doi.org/10.1007/s00382-016-3425-8.

19Chen J., Z. Wen*, R. Wu, X. Wang, and C He, 2017: An interdecdal change in the intensity of interannual variability in summer rainfall over southern China around early 1990s. Climate Dynamics, 48, 191-207, doi:10.1007/s00382-016-3069-8.

20Wang J., Z. Wen*, R. Wu, Y. Guo, and Z. Chen, 2016: The mechanism of growth of the low-frequency East Asia-Pacific teleconnection and the triggering role of tropical intraseasonal oscillation. Climate Dynamics, 46(11), 3965-3977, https://doi.org/10.1007/s00382-015-2815-7.

21Guo Y., Z. Wen*, R. Wu, R. Lu, and Z. Chen, 2015: Impact of tropical Pacific precipitation on the East Asian upper-tropospheric westerly jet during the boreal winter. Journal of Climate, 28(16), 6457-6474, https://doi.org/10.1175/JCLI-D-14-00674.1.

22Chen J., Z. Wen*, R. Wu and Z. Chen, 2015: Influences of northward propagating 25-90-day and quasi-biweekly oscillations on Eastern China summer rainfall. Climate Dynamics, 45(1), 105-124, https://doi.org/10.1007/s00382-014-2334-y.

23Feng X., R. Wu, J. Chen, and Z, Wen*, 2013: Factors for interannual variations of September-October rainfall in Hainan, China. Journal of Climate, 26, 8962-8978. https://doi.org/10.1175/JCLI-D-12-00728.1.

(二)大尺度海-气和陆-气相互作用

24Zhang R., B. Dong, Z. Wen*, Y. Guo, and X. Chen, 2023: Multidecadal variability of the air-sea coupling system of the midlatitude Southern Indian Ocean. Journal of Climate, 36, 8761-8781. https://doi.org/10.1175/JCLI-D-23-0198.1.

25Li J., Z. Wen, X. Li, and Y. Guo, 2022: Interdecadal Changes in the Relationship between Wintertime Surface Air Temperature over the Indo-China Peninsula and ENSO. Journal of Climate35, 975-995. https://doi.org/10.1175/JCLI-D-21-0477.1.

26Zhang C., Y. Guo, and Z. Wen*, 2022: Interdecadal Change in the Effect of Tibetan Plateau Snow Cover on Spring Precipitation over Eastern China around the Early 1990s. Climate Dynamics, 58, 2807-2824. https://doi.org/10.1007/s00382-021-06035-w. 

27Chen Z., Z. Li, Y. Du, Z. Wen, R. Wu, and S. Xie, 2021: Trans-Basin Influence of Southwest Tropical Indian Ocean Warming during Early Boreal Summer, Journal of Climate, 34, 9679-9691, https://doi.org/10.1175/JCLI-D-20-0925.1

28Zhang C., X. Jia, and Z. Wen, 2021: Increased Impact of the Tibetan Plateau Spring Snow Cover to the Mei-yu Rainfall over the Yangtze River Valley after the 1990s.  Journal of Climate, 34, 5985-5997. https://doi.org/10.1175/JCLI-21-0009.1

29Zhang R., Y. Guo, Z. Wen, and R. Wu, 2020: Distinct patterns of sea surface temperature anomaly in the South Indian Ocean during austral autumn. Climate Dynamics, 54:2663–2682, https://doi.org/10.1007/s00382-020-05135-3.

30Guo Y., Z. Wen*, and X. Li, 2020: Interdecadal Change in the Principal Mode of Winter-Spring Precipitation Anomaly over Tropical Pacific around the Late 1990s. Climate Dynamics. 54, 1023-1042, https://doi.org/10.1007/s00382-019-05042-2.

31Chen Z., Y. Du, Z. Wen, R. Wu, and S. Xie, 2019: Evolution of south tropical Indian Ocean warming and the climatic impacts following strong El Niño event. Journal of Climate. 32, 7329-7347,  https://doi.org/10.1175/JCLI-D-18-0704.1.

32Wang Y., R. Wu, and Z. Wen, 2019: Seasonal variations in size and intensity of the Indo-western Pacific warm pool in different sectors. Journal of Oceanography, 75, 423–439,  https://doi.org/10.1007/s10872-019-00511-y.

33Guo Y., Z. Wen*, R. Chen, X. Li and X. Yang, 2019: Effect of boreal spring precipitationanomaly pattern change in the late 1990s over tropical Pacific on the atmospheric teleconnection. Climate Dynamics, 52:1-2, 401-416, https://doi.org/10.1007/s00382-018-4149-8.

34Li X.Z. Wen, D. Chen, and Z. Chen, 2019: Decadal transition of the leading mode of interannual moisture circulation over East Asia-Western North Pacific: Bonding to Different Evolution of ENSO. Journal of Climate, 32, 289-308,  https://doi.org/10.1175/JCLI-D-18-0356.1.

35Li Y., W. Tian, F. Xia, Z. Wen, and J. Zhang, 2018: The Connection between the Second Leading Mode of Winter North Pacific Sea Surface Temperature Anomalies and Stratospheric Sudden Warming Events. Climate Dynamics, 51, 581-595, https://doi.org/10.1007/s00382-017-3942.

36Chen Z., Y. Du, Z. Wen, R. Wu, and C. Wang, 2018: Indo-Pacific climate during the decaying phase of the 2015/16 El Niño: Role of southeast tropical Indian Ocean warming. Climate Dynamics. 50 (11-12), 4707-4719,https://doi.org/10.1007/s00382-017-3899-z.

37Li J., D. Huang, F. Li, and Z. Wen, 2018: Circulation Characteristics of EP and CP ENSO and Their Impacts on Precipitation in South China. Journal of Atmospheric and Solar-Terrestrial Physics179, 405–415, https://doi.org/10.1016/j.jastp.2018.09.006.

38Chen Z., Z Wen*, R. Wu, and Y. Du, 2017: Roles of tropical SST anomalies in modulating the western north Pacific anomalous cyclone during strong La Nina decaying years. Climate Dynamics, 49 :633-647, https://doi.org/10.1007/s00382-016-3364-4.

39He Z., R. Wu, W. Wang, Z. Wen, and D. Wang, 2017: Contributions of surface heat fluxes and oceanic processes to tropical SST changes: Seasonal and regional dependence. Journal of Climate, 30, 4185-4205, https://doi.org/10.1175/JCLI-D-16-0500.1.

40Guo Y., M. Ting, Z. Wen, and D. Lee, 2017: Distinct patterns of Tropical Pacific SST Anomaly and Their Impacts on North American Climate. Journal of Climate, 30(14), 5221-5241, https://doi.org/10.1175/JCLI-D-16-0488.1.

41Peng B.Z. ChenZ. Wen*and R. Lu, 2016Impacts of two types of El Niño on MJO during boreal winter. Advances in Atmospheric Sciences, 33(8): 979-986, https://doi.org/10.1007/s00376-016-5272-2.

42Guo Y., Z. Wen*, and R. Wu, 2016: Interdecadal Change in the Tropical Precipitation Anomaly around the late 1990s during the Boreal Spring. Journal of Climate, 29, 5979-5997, https://doi.org/10.1175/JCLI-D-15-0462.1.

43Chen Z., Z. Wen*, R. Wu, X. Lin and J. Wang, 2016: Relative Importance of Tropical SST Anomalies in Maintaining the Western North Pacific Anomalous Anticyclone during El Niño to La Niña transition years. Climate Dynamics, 46(3), 1027-1041, https://doi.org/10.1007/s00382-015-2630-1.

44Chen J., Z. Wen*, R. Wu, and Z. Chen, 2014: Interdecadal Changes in the Relationship between Southern China Winter-spring Precipitation and ENSO. Climate Dynamics, 43(5) ,1327-1338, https://doi.org/10.1007/s00382-013-1947-x.

45Chen Z., Z. Wen*, R. Wu, P. Zhao, and J. Cao, 2014: Influence of two types of El Niños on the East Asian climate during boreal summer: A numerical study. Climate Dynamics, 43(1), 469-481, https://doi.org/10.1007/s00382-013-1943-1.

46Wu R., Z. Wen, and Zhouqi He, 2013: ENSO Contribution to Aerosol Variations over the Maritime Continent and the Western North Pacific during 2000-2010.  Journal of Climate, 26, 6541-6560, https://doi.org/10.1175/JCLI-D-12-00253.1.

(三)亚洲季风

47Chen W., R. Zhang, R. Wu, Z. Wen, et al. 2023: Recent Advances in Understanding Multi-scale Climate Variability of the Asian Monsoon, Advances in Atmospheric Sciences, 40, 1429-1456. https://doi.org/10.1007/s00376-023-2266-8

48Chen G., Y. Du, and Z. Wen, 2021: Seasonal, interannual and interdecadal variations of the East Asian summer monsoon: A diurnal-cycle perspective. Journal of Climate, 34, 4403-4421,  https://doi.org/10.1175/JCLI-D-20-0882.1.

49Zhen Z.,Y. Guo, and Z. Wen*, 2021: Inter-decadal change in the relationship between the Bay of Bengal summer monsoon and South China Sea summer monsoon onset. Front. Earth Sci., https://doi.org/0.3389/feart.2020.610982.

50Wang Z., Z. Wen*, R. Chen, X. Li, and S. Huang, 2020: Interdecadal enhancement in the interannual variability of the summer monsoon meridional circulation over the South China Sea around the early 1990s. Climate Dynamics, 55, 2149–2164, https://doi.org/10.1007/s00382-020-05375-3.

51Lin Z., B. Dong, Z. Wen, 2020: The effects of anthropogenic greenhouse gases and aerosols on the inter-decadal change of the South China Sea summer monsoon in the late 20th Century. Climate Dynamics. 54, 3339–3354,  https://doi.org/10.1007/s00382-020-05175-9.

53Chen, W., L. Wang, J. Feng, Z. P. Wen, T. J, Ma, X. Q. Yang, and C. H. Wang, 2019: Recent progress in studies of the variabilities and mechanisms of the East Asian monsoon in a changing climate. Adv. Atmos. Sci., 36(9), 887–901,  https://doi.org/10.1007/s00376-019-8230-y.

53Zhang H., Z. Wen*, R. Wu, R. Chen, and X. Li, 2019: An inter-decadal increase in summer sea level pressure over the Mongolian region around the early 1990s. Climate Dynamics, 52:3-4, 1935-1948, https://doi.org/10.1007/s00382-018-4228-x.

54Zhu X., Y. Guo, H. Zhang, X. Li, R. Chen and Z. Wen*, 2018: A southward withdrawal of the north edge of the East Asian summer monsoon around the early 1990s. Atmospheric and Oceanic Sciences. 11(2), 136-142, https://doi.org/10.1080/16742834.2018.1410058.

55Zhang H., Z. Wen*, and R. Wu, 2017: Inter-decadal changes in the East Asian summer monsoon and associations with sea surface temperature anomaly in the South Indian Ocean. Climate Dynamics, 481125-1139, https://doi.org/10.1007/s00382-016-3131-6.

56LIANG Jie-Yi, WEN Zhi-Ping*, CHEN Jie-Peng and WU Li-Ji. 2013: Characteristics of Tropical Sea Surface Temperature Anomalies and Their Influences on the Onset of South China Sea Summer MonsoonAtmospheric and Oceanic Sciences Letter. 6(5)266-272.

(四)台风气候学

57Gu Y., L. Wu, R. Zhan, and Z. Wen, 2022: Characteristics of developing and nondeveloping disturbances for tropical cyclone genesis over the western North Pacific. Terrestrial, Atmospheric and Oceanic Sciences, 33:13. https://doi.org/10.1007/s44195-022-00012-4

58Wu L., Z. Wen*, and R. Huang. 2020: Tropical cyclones in a warming climate. Science China Earth Science, 63(3): 456-458, doi:10.1007/s11430-019-9574-4.

59Chen, S., W. Li, Z. Wen, Y. Lu, M. Zhou, Y. Qian, and G. Chen, 2019: Vertical motions prior to the intensification of simulated Typhoon Hagupit (2008). Journal of Geophysical Research: Oceans, 124, 577–592, https://doi.org/10.1029/ 2018JC014086.

60Chen S., W. Li, Z. Wen, and Y. Qian, 2018: Variations in High-frequency Oscillations of Tropical Cyclones over the Western North Pacific. Advance in Atmospheric Sciences. 35 (4),423-434, https://doi.org/10.1007/s00376-017-7060-z.

61Lin X., Z. Wen, W. Zhou, R. Wu, and R. Chen, 2017: Effect of Tropical Cyclone Activity on Boundary Moisture Budget of the East Asian Monsoon Region. Advances in Atmospheric Sciences, 34, 700-712, https://doi.org/:10.1007/s00376-017- 6191-6.

62Chen J., Z. Wen*, and X. Wang, 2017: Relationship over southern China between the summer rainfall induced by tropical cyclones and that by monsoon. Atmos. Oceanic Sci. Lett., 10(1), 96-103, https://doi.org/10.1080/16742834.2017.1248756.

63Wu L., Z. Wen, and R. Wu, 2015: Influence the monsoon trough on westward-propagating synoptic-scale disturbances over the western North Pacific. Part I: Observations. Journal of Climate, 28(18), 7108-7127, https://doi.org/10.1175/JCLI-D-14-00806.1.

64Wu L., Z. Wen, and R. Wu, 2015: Influence the monsoon trough on westward-propagating synoptic-scale disturbances over the western North Pacific. Part II: Energetics and numerical experiments. Journal of Climate, 28, 9332-9349, https://doi.org/10.1175/JCLI-D-14-00807.1.

65Chen S., Y. Lu, W. Li, and Z. Wen, 2015: Identification and Analysis of High-Frequency Oscillations in the Eyewalls of Tropical Cyclones. Advances in Atmospheric Sciences32, 624–634https://doi.org/10.1007/s00376-014-4070-y.

66Chen S., W. Li, Y. Lu, and Z. Wen, 2014: Variations of latent heat flux during tropical cyclones over the South China Sea. Meteorol. Appl., 21: 717–723doi:10.1002/met.1398.

67Wu L., Z. Wen*, T. Li, and R. Huang, 2014: ENSO-phase dependent TD and MRG wave activity in the western North Pacific. Climatic Dynamics, 42(5), 1217–1227, https://doi.org/10.1007/s00382-013-1754-4.

68Chen J., R. Wu, and Z. Wen, 2012: Contribution of South China Sea tropical cyclones to southern China summer rainfall increase around 1993. Advance in Atmospheric Sciences, 29(3), 585-598, https://doi.org/10.1007/s00376-011-1181-6.

69Wu L., Z. Wen*, R. Huang, and R Wu, 2012: Possible linkage between the monsoon trough variability and the tropical cyclone activity over the western North Pacific. Monthly Weather Review140(1), 140-150, https://doi.org/10.1175/MWR-D-11-00078.

(五)极端天气气候

70Huang S., Z. Wen*, X. Chen, Y. Guo, and Z. Wang, 2023: Origins of the intraseasonal variability of the extreme rainfall in Henan Province of China in July 2021. Climate Dynamics, https://doi.org/10.1007/s00382-023-07052-7.

71Zhou Y., J. Yuan, Z. Wen, Y. Guo, X. Chen, and S. Huang, 2023: The impacts of the East Asian subtropical westerly jet on weather extremes over China in early and late summer. Atmospheric and Oceanic Science Letters https://doi.org/10.1016/j.aosl.2022.100212

72Huang S., Z. Wen, X. Chen, Y. Guo, and Z. Wang. 2022: The Henan extreme rainfall in July 2021: Modulation of the northward-shift monsoon trough on the synoptic-scale disturbance. Advances in Climate Change Research, 13, 819-825.

73Chen X., Z. Wen*, Y. Song, and Y. Guo, 2022: Causes of extreme 2020 Meiyu-Baiu rainfall: a study of combined effect of Indian Ocean and Arctic. Climate Dynamics. 59, 3485–3501. https://doi.org/10.1007/s00382-022-06279-0.

74Zeng, W., G. Chen, L. Bai, Q. Liu, and Z. Wen, 2022: Multiscale Processes of Heavy Rainfall over East Asia in Summer 2020: Diurnal Cycle in Response to Synoptic Disturbances. Mon. Wea. Rev., 150 (6), 1355–1376. https://doi.org/10.1175/MWR-D-21-0308.1

75Chen R., Z. Wen, R. Lu, and W. Liu, 2021: Interdecadal changes in the interannual variability of the summer temperature over Northeast Asia. Journal of Climate, 34, 8361-8376. https://doi.org/10.1175/JCLI-D-21-0115.1.

76Chen G., Y. Du, and Z. Wen, 2021: Seasonal, interannual and interdecadal variations of the East Asian summer monsoon: A diurnal-cycle perspective. Journal of Climate, 34, 4403-4421. https://doi.org/10.1175/JCLI-D-20-0882.1.

77Guo Y., R. Zhang, Z. Wen*, J. Li, C. Zhang, and Z. Zhou, 2021: Understanding the role of SST anomaly in extreme rainfall of 2020 Meiyu Season from an interdecadal perspective. Science China Earth Sciences, 10(64), 1619-1632, https://doi.org/10.1007/s11430-020-9762-0.

78Chen X., A. Dai, Z. Wen, and Y. Song, 2021: Contributions of Arctic sea-ice loss and East Siberian atmospheric blocking to 2020 record-breaking Meiyu-Baiu rainfall. Geophysical Research Letters48, e2021GL092748,  https://doi.org/10.1029/2021GL092748.

79Liu W., R. Chenand Z. Wen, 2021: An interdecadal decrease of extreme heat days in August over Northeast China around the early 1990s. Atmospheric and Oceanic Science Letters, 14 (2021) 100001, https://doi.org/10.1016/j.aosl.2020.100001.

80Lin W., R. Chen, Z. Wen, and W. Chen, 2021: Large-scale circulation features associated with different types of extreme high temperatures over South China. International Journal of Climatology, 42(2), 974–992. https://doi.org/10.1002/joc.7283.

81Li X., Z. Wen, W. Huang, 2020: Modulation of South Asian Jet wave train on the Extreme Winter Precipitation over Southeast China: Comparison between 2015/16 and 2018/19. Journal of Climate, 33, 4065-4081,  https://doi.org/10.1175/JCLI-D-19-0678.1.

82Wu N., X. Ding, Z. Wen*, Z. Meng, G. Chen, and J. Min, 2020: Contrasting the frontal and warm-sector heavy rainfalls over South China during the early-summer rainy season, Atmospheric Research, 235, 104693, https://doi.org/10.1016/j.atmosres.

83Zeng, W., G. Chen, Y. Du, and Z. Wen, 2019: Diurnal variations of low-level winds and rainfall response to large-scale circulations during a heavy rainfall event. Monthly Weather Review, 147:3981-4004.  https://doi.org/10.1175/MWR-D-19-0131.1.

84Chen R., Z. Wen, and R. Lu, 2019: Influences of tropical circulation and sea surface temperature anomalies on extreme heat over Northeast Asia in the midsummer of 2018. Atmospheric and Oceanic Science Letters, 12(4), 238-245, https://doi.org/0.1080/16742834.2019.1611170

85Chen R., Z. Wen, R. Lu and C. Wang, 2019: Causes of the Extreme Hot Midsummer in Central and South China during 2017: Role of the western tropical Pacific warming. Advance in Atmospheric Sciences. 36(5), 465-478, https://doi.org/10.1007/s00376-018-8177-4.

86Chen R., Z. Wen, and R. Lu, 2018: Large-scale circulation anomalies and intra-seasonal oscillations associated with the long-lived extreme heat events in South China. Journal of Climate. 31, 213-231. https://doi.org/10.1175/JCLI-D-17-0232.1.

87Chen, R., Z. Wen, and R. Lu, 2018: Interdecadal change on the relationship between the mid-summer temperature in South China and atmospheric circulation and sea surface temperature. Climate Dynamics, 51, 2113-2126, https://doi.org/10.1007/s00382-017-4002-5.

88Chen, G., W. Sha, T. Iwasaki, and Z. Wen, 2017: Diurnal cycle of a heavy rainfall corridor over East Asia. Monthly Weather Review, 145 (8), 3365–3389, https://doi.org/10.1175/MWR-D-16-0423.1.

89Chen R., Z. Wen, R. Lu, 2016: Evolutions of the circulation anomalies and the quasi-biweekly oscillations associated with extreme heat events in South China. Journal of Climate, 29, 6909-6921, https://doi.org/10.1175/JCLI-D-16-0160.1.

90WU Li-Ji, WEN Zhi-Ping*, HE Hai-Yan, 2015: Relationship between the Periodic Fluctuations of Pressure and Precipitation during a Rainstorm. Atmos. Oceanic Sci. Lett., 8(2), 78-81, https://doi.org/10.3878/AOSL20140082.

(六)其它方向

91Guo Y., X. Chen, S. Huang, and Z. Wen, 2023: Amplified interannual variation of the Summer Sea Ice in the Weddell Sea, Antarctic after the late 1990s. Geophysical Research Letters,50, e2023GL104924. https://doi.org/10.1029/2023GL104924

92Zhao Y., Z. Wen and X. Li, 2023: Interannual meridional variation of the Mascarene High and its coupling with transient eddies over the southern Indian Ocean in austral winter. Journal of Climate, 36, 6937-6950. https://doi.org/10.1175/JCLI-D-22-0838.1

93Li J., X. Chen, Y. Guo, and Z. Wen*, 2023: Contrasting Deep and Shallow Winter Warming over the Barents-Kara Seas on the Intraseasonal Time Scale. Journal of Climate, 36(19), 6897–6916.https://doi.org/10.1175/JCLI-D-22-0879.1

94Chen Z., Y. Du, R. Wu, and Z. Wen, 2023: Atmospheric rivers over East Asia during early boreal summer: Role of Indo-western Pacific Ocean capacitor, Climate Dynamics. https://doi.org/10.1007/s00382-023-07036-7

95Zhou Y., J. Yuan, Z. Wen, X. Chen, Y. Guo, and X. Yang, 2023: The influence of the wave trains on the intraseasonal variability of the East Asian subtropical westerly jet in early and late summer, Climate Dynamics, 60, 2081–2095.  https://doi.org/10.1007/s00382-022-06412-z.

96Guo Y., Z. Wen, Y. Zhu, and X. Chen, 2022: Effect of Tropical Precipitation Anomaly Pattern Change in the Late 1990s on Teleconnection to the Amundsen-Bellingshausen Seas Region during Austral Autumn. Journal of Climate, 35, 5687-5702.  https://doi.org/10.1175/JCLI-D-21-0965.1

97Zhao Y., Z. Wen, X. Li, R. Chen, and G. Chen. 2022: Structure and Maintenance Mechanisms of the Mascarene High in Austral Winter. International Journal of Climatology, 42(9), 4700–4715. https://doi.org/10.1002/joc.7498.

98Huang J., W. Chen, Z. Wen, G. Zhang, Z. Li, Z. Zuo, and Q. Zhao, 2019: Review of Chinese atmospheric science research over the past 70 years: Climate and climate change. Sci China Earth Sci. 62,1514–1550,  https://doi.org/10.1007/s11430-019-9483-5.

99Zheng Z., Z. Wei, Z. Wen, W. Dong, Z. Li, X. Wen, X. Zhu, C. Chen, and S. Hu, 2018: A study of variation characteristics of Gobi broadband emissivity based on field observational experiments in northwestern China. Theoretical and applied climatology, 131(3-4), 1357-1368, https://doi.org/10.1007/s00704-017-2056-2.

100Jiang P., Z. Wen and W. Sha, G. Chen, 2017: Interaction between Organized Turbulent Flow and Sea-Breeze Front over Urban-like Coast in Large-Eddy Simulation. Journal of Geophysical Research: Atmosphere, 122, 5298–5315, https://doi.org/10.1002/2016JD026247.

101Ding Z., Y. Ma, Z.Wen, W. Ma, and S. Chen, 2017: A comparison between energy transfer and atmospheric turbulent exchanges over alpine meadow and banana plantation. Theoretical and Applied Climatology, 129: 59-76, https://doi.org/10.1007/s00704-016-1754-5.

102Zhu, X., G. Chen, W. Sha, T. Iwasaki, W. Li, and Z. Wen, 2014: The role of rapid urbanization in surface warming over eastern China. International Journal of Remote Sensing, 35 (24), 8295-8308, https://doi.org/10.1080/01431161.2014.985397.

103Wu R., J. Chen, and Z. Wen, 2013: Precipitation-Surface Temperature Relationship in the IPCC CMIP5 Models. Advances in Atmospheric Sciences, 30(3), 2013, 766-778, https://doi.org/10.1007/s00376-012-2130-8.

104Ding Z., Z Wen*, R. Wu, Z. Li, J. Zhu, W. Li, and M. Jian, 2013: Surface energy balance measurements of a banana plantation in South China. Theor. Appl. Climatol, 114, 349–363, https://doi.org/10.1007/s00704-013-0849-5.  


#以上信息由本人提供,更新时间:2024/02/20