Insight into winter haze formation mechanisms based on aerosol hygroscopicity and effective density measurements

Yuanyuan Xie1, Xingnan Ye1,2, Zhen Ma1, Ye Tao1, Ruyu Wang1, Ci Zhang1, Xin Yang1,2, Jianmin Chen1,2, and Hong Chen1

1Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
2Institute of Atmospheric Sciences, Fudan University, Shanghai 200433, China

Correspondence to: Xingnan Ye (yexingnan@fudan.edu.cn) and Jianmin Chen (jmchen@fudan.edu.cn)

Received: 9 January 2017 – Discussion started: 16 February 2017
Revised: 17 April 2017 – Accepted: 7 May 2017 – Published: 16 June 2017

Abstract. We characterize a representative particulate matter (PM) episode that occurred in Shanghai during winter 2014. Particle size distribution, hygroscopicity, effective density, and single particle mass spectrometry were determined online, along with offline analysis of water-soluble inorganic ions. The mass ratio of SNA/PM\textsubscript{1.0} (sulfate, nitrate, and ammonium) fluctuated slightly around 0.28, suggesting that both secondary inorganic compounds and carbonaceous aerosols contributed substantially to the haze formation, regardless of pollution level. Nitrate was the most abundant ionic species during hazy periods, indicating that NO\textsubscript{x} contributed more to haze formation in Shanghai than did SO\textsubscript{2}. During the representative PM episode, the calculated PM was always consistent with the measured PM\textsubscript{1.0}, indicating that the enhanced pollution level was attributable to the elevated number of larger particles. The number fraction of the near-hydrophobic group increased as the PM episode developed, indicating the accumulation of local emissions. Three “banana-shaped” particle evolutions were consistent with the rapid increase of PM\textsubscript{1.0} mass loading, indicating that the rapid size growth by the condensation of condensable materials was responsible for the severe haze formation. Both hygroscopicity and effective density of the particles increased considerably with growing particle size during the banana-shaped evolutions, indicating that the secondary transformation of NO\textsubscript{3} and SO\textsubscript{2} was one of the most important contributors to the particle growth. Our results suggest that the accumulation of gas-phase and particulate pollutants under stagnant meteorological conditions and subsequent rapid particle growth by secondary processes were primarily responsible for the haze pollution in Shanghai during wintertime.

1 Introduction

Atmospheric aerosol has significant influences on radiation balance and climate forcing of the atmosphere (Wang et al., 2011, 2014b; G. Wu et al., 2016; IPCC, 2013). Also, atmospheric aerosol has strong impacts on visibility (Yang et al., 2012; Lin et al., 2014; Xiao et al., 2014) and public health (Heal et al., 2012). Recent studies found that short-term exposure to haze pollution could cause airway inflammation and aggravate respiratory symptoms in chronic obstructive pulmonary disease patients (S. Wu et al., 2016; Guan et al., 2016).

With the huge achievements in economic development and rapid urbanization over the past 30 years, particulate pollution has become a major environmental concern in China. The most severe haze event that occurred in the first quarter of 2013 spread over 1.6 million km2 (Wang et al., 2014). This event motivated the release of the Action Plan on Prevention and Control of Air Pollution with the goal of reducing PM\textsubscript{2.5} (particulate matter smaller than 2.5 µm in aerodynamic diameter) concentration by 15–25 % (2012) by 2017 in three major city clusters (http://english.mep.gov.cn/News_service/infocus/201309/t20130924_260707.htm). In order to reduce the PM\textsubscript{2.5} concentration, extensive studies have been conducted to investigate the sources and formation mechanisms of haze pollution in recent years (Ye et al., 2011; Sun et al.,...
The concentrations of SO\(_2\) and PM formation were reviewed by Zhang et al. (2015b). Indeed, a large enhancement of particulate sulfate exists under highly polluted conditions, indicating different effects among various organic and inorganic compounds may proceed more efficiently with the increase of NO\(_2\) concentration, whereas the reaction is suppressed in acid conditions because acid effect reduces the solubility of SO\(_2\) and reaction rate. The enhanced sulfate formation during severe haze periods in Beijing was attributable to aqueous oxidation of SO\(_2\) by NO\(_2\) on hygroscopic fine particles under conditions of elevated RH and the concentrations of NH\(_3\) and NO\(_2\), as confirmed by the comparable SO\(_2\) uptake coefficients for sulfate formation from field and laboratory results.

The hygroscopic properties of ambient particles vary significantly depending on the origin of the air masses and the atmospheric aging process. In urban air, the population of near-hydrophobic particles can be assumed to consist largely of freshly emitted combustion particles containing high mass fractions of soot and water-insoluble organic compounds (Swietlicki et al., 2008; Massling et al., 2009). In contrast, secondary sulfate or nitrate aged particles are more hygroscopic, and their relative abundance is primarily responsible for the hygroscopic growth of ambient particles at elevated RH (Topping et al., 2005; Aggarwal et al., 2007; Gysel et al., 2008). The aging process in previous studies (Yin et al., 2015; Guo et al., 2014) served as a tracer for new particle formation (NPF) and for the aging process in previous studies (Yin et al., 2015; Guo et al., 2014). The ambient particles in urban areas are mostly complex mixtures of elemental carbon (EC), organics (OC), and secondary inorganic aerosols (SIA) (Hu et al., 2012). The effective density of nascent traffic particles varies from approximately 0.9 g cm\(^{-3}\) to below 0.4 g cm\(^{-3}\), decreasing with the increase of particle size, because there are more voids between primary particles in relatively larger aggregates (Momenimovahed and Olfert, 2015). The effective density of OC is in between that of EC and SIA and varies with source. The effective density of combustion particles increases by filling the voids in the agglomerate particles with condensed semivolatile materials or by restructuring agglomerates with hygroscopic SIA (Momenimovahed and Olfert, 2015; Zhang et al., 2008).

In this study, a combined HTDMA-APM (hygroscopic tandem differential mobility analyzer and aerosol particle
2 Experimental

2.1 Sampling site

The measurements of particle hygroscopicity and effective density were conducted from 21 December 2014 to 13 January 2015 at the Department of Environmental Science and Engineering on the main campus of Fudan University (31.30° N, 121.5° E). It can be considered as a representative urban site for Shanghai. There are many dwelling quarters and commercial blocks in surrounding area. About 400 m away from the measurement site, there is the Middle Ring Line, one of the busiest elevated roads in the city.

2.2 Measurements of air quality index and ground meteorological parameters

At a supersite about 100 m away from the Environmental Building, PM$_{1.0}$ was monitored using a Thermo Scientific™ 5030 SHARP monitor. Trace gas pollutants were monitored using Thermo Scientific™ i-series gas analyzers (43i for SO$_2$, 49i for O$_3$, 42i for NO/NO$_x$/NO$_y$), and meteorological data were monitored using an automatic meteorological station (model CAWS600, Huayun Inc., China) (Yin et al., 2015). The data of PM$_{2.5}$, PM$_{10}$, and CO were released by the Shanghai Environmental Monitoring Center. The height of the planetary boundary layer (PBL) was computed online using the NCEP Global Data Assimilation System (GDAS) model (http://ready.arl.noaa.gov/READYamet.php).

2.3 HTDMA-APM system

Particle size distribution, hygroscopic growth factor (GF), and effective density were measured using a custom-built HTDMA-APM system (Fig. 1). The custom-built HTDMAs mainly consist of two long DMAs (3081L, TSI Inc.), a humidifier (PD-50T-12MSS, Perma Pure Inc.), and a condensation particle counter (CPC, model 3771, TSI Inc.). A detailed description of the HTDMA is available in Ye et al. (2009). In this observation, particle number size distribution in the range of 14–600 nm and hygroscopic growth at 83% RH for particles with dry diameters of 40, 100, 220, 300, 350, and 400 nm were determined by HTDMA in turn. The determination of effective density by DMA-APM was described previously (Yin et al., 2015; Pagels et al., 2009). Briefly, a combined system consisting of a compact APM (model 3601, Kanomax Inc.) and a CPC (model 3775, TSI Inc.) was connected to the sample tubing through a three-way electrical switch behind the upstream DMA (DMA1). The APM comprises two coaxial cylindrical electrodes rotating at the same angular velocity. Charged aerosol particles of a certain diameter sized by DMA1 are axially fed into the annular gap between the electrodes and experienced an outward centrifugal force from the particle rotating and an inward electrostatic force from the high-voltage field between the electrodes. Particles pass through the APM and are sent to the CPC when the two forces are balanced. The mass of particles that pass through the APM is determined by the rotation rate and the applied voltage. Effective densities for dry diameters of 40, 100, 220, and 300 nm were determined by the method of DMA-APM in this study. The HTDMA-APM was operated alternatively in HTDMA mode and then DMA-APM mode, for every 40 min.

Before the field observation, the HTDMA-APM was calibrated using 40–450 nm NIST-traceable polystyrene latex sphere particles and ammonium sulfate. The measured HTDMA data were invered with the TDMA$_{inv}$ algorithm to obtain the actual GF distribution. This is because the raw data are only a skewed and smoothed integral transform of the actual GF probability density function (GF-PDF) (Gysel et al., 2009). The hygroscopicity parameter κ was derived from the GF data after inversion with the TDMA$_{inv}$ algorithm according to the κ-Köhler theory (Petters and Kreidenweis, 2007).

2.4 Single particle aerosol mass spectrometry (SPAMS)

A SPAMS (Hexin Analytical Instrument Co., Ltd., China) installed in the same room with the HTDMA-APM system was used to obtain the chemical and size information of individual particles in the range of 0.2–2 µm. Detailed information on SPAMS is available in Li et al. (2011). Briefly, ambient particles are drawn into a vacuum chamber through an aerodynamic focusing lens and accelerated to a size-dependent terminal velocity. Sized particles are desorbed and ionized by the pulsed desorption/ionization laser (Q-switched Nd: YAG, $\lambda = 266$ nm) at the ion source region. Both positive and negative mass spectra for a single particle are recorded...
Figure 2. Temporal evolutions of PM$_{1.0}$, PM$_{2.5}$, and PM$_{10}$ concentrations during the winter observation.

by a bipolar time-of-flight spectrometer. The single particle information was imported into YAADA (version 2.11, www.yaada.org). Based on the similarities of the mass-to-charge ratio and peak intensity, particles were classified using the ART-2a method.

2.5 Ion chromatography

Cascade impactor aerosol samples for offline analysis were collected at the roof platform of the Environmental Building using a 10-stage MOUDI sampler (micro-orifice uniform deposit impactor, model 110-NR, MSP Corp., USA). A detailed description of the sampling, pretreatment, chemical analysis, and quality control of this system is available in Tao et al. (2016). Briefly, cascade impactor samples were collected every 24 h using the PALL7204 quartz filter as the collection substrate. Each filter was weighted with a BP211D electronic balance at 25°C and 40 ± 2 % RH. The water extract of each sample was analyzed using an ion chromatograph (Metrohm 883 basic IC plus, Switzerland) equipped with a third-party column heater (CT-100, Agela Corp., China). Seven anions (F$^-$, Cl$^-$, NO$_2^-$, Br$^-$, NO$_3^-$, SO$_4^{2-}$, and PO$_4^{3-}$) were resolved using a Metrosep A Supp 5-250/4.0 column at 35°C with an eluent of 3.2 mmol L$^{-1}$ Na$_2$CO$_3$ + 1.0 mmol L$^{-1}$ NaHCO$_3$. Six cations (Li$^+$, Na$^+$, NH$_4^+$, K$^+$, Ca$^{2+}$, and Mg$^{2+}$) were separated by a Metrosep C4-250/4.0 column at 30°C with an eluent of 1.7 mmol L$^{-1}$ HNO$_3$ + 0.7 mmol L$^{-1}$ 2,6-pyridine dicarboxylic acid.

3 Results and discussion

3.1 Periodic cycle of PM episodes during the observation period

Figure 2 shows the temporal variations of PM mass loading during the winter observation (21 December 2014 to 13 January 2015). The official data of PM$_{2.5}$ and PM$_{10}$ were blank on some clean days. Meteorologically, our measurement was deployed in a typical winter period. The average concentrations of PM$_{1.0}$, PM$_{2.5}$, and PM$_{10}$ were 57 ± 37, 87 ± 67, and 129 ± 78 µg m$^{-3}$, respectively. About 62 % of hourly averaged PM$_{2.5}$ concentrations exceeded 75 µg m$^{-3}$ of the Chinese Grade II guideline (GB 3095-2012), indicating heavy particle pollution in Shanghai during wintertime. The PM episodes exhibited a clear periodic cycle of ~ 5 days. A similar feature was previously observed in Beijing (Guo et al., 2014). At the beginning of each cycle, the PM$_{1.0}$ level was below 35 µg m$^{-3}$. Generally, the difference between the concentrations of PM$_{1.0}$ and PM$_{2.5}$ during clean days was less significant than that in haze periods. Occasionally the measured PM$_{2.5}$ concentrations were larger than those of PM$_{10}$, possibly due to system error. However, the particle mass concentration began to increase in the next few days, with PM$_{1.0}$ and PM$_{2.5}$ peaking at over 100 and 200 µg m$^{-3}$, respectively. During the end of each PM episode, the change in weather conditions played a key role in the decrease of particle concentration. As shown in Fig. S1 in the Supplement, the prevailing winds on haze days were from the northwest. The prevailing winds during two clean periods (25–27 December and 12–14 January) were northeasterly, bringing clean air mass from the East China Sea. Two cold fronts from the north swept Shanghai on 31 December and 6 January, bringing gale and lower temperatures which favored the dispersion of atmospheric pollutants.

3.2 Contributions of SIA to PM$_{1.0}$ mass loading

Figure 3 illustrates the daily concentrations of sulfate, nitrate, and ammonium (SNA) as a function of PM$_{1.0}$ mass loading. In general, the sum of concentrations of SNA increased linearly as the PM$_{1.0}$ mass loading increased. It is noticeable that the SNA / PM$_{1.0}$ ratio slightly fluctuated around 0.28, regardless of the pollution level. Because soil dust and sea salt made a negligible contribution to the fine particle mass concentration in this study, the almost constant ratio of SNA / PM$_{1.0}$ indicates that SNA and carbonaceous aerosols (including soot and organic matter) synchronously
increased during the haze events. As the PM$_{1.0}$ concentration increased, the concentration of nitrate increased more rapidly than sulfate so that it became the most abundant ionic species at PM$_{1.0} > 40 \mu$g m$^{-3}$. This finding indicates that NO$_x$ contributed more to haze formation in Shanghai compared to SO$_2$. Generally, the visibility decreased with the increase in PM concentration, indicating photochemical activity began to weaken as the development of haze events. The large increase in nitrate concentration may be attributable to heterogeneous reaction on the preexisting particles. Nitrate formation is highly dependent on the surface area of preexisting particles and is favored under NH$_3$-rich conditions (Chu et al., 2016). In contrast, Han et al. (2016) reported that the mass ratio of nitrate to sulfate decreased with the increase of PM$_{2.5}$ level and that the sources of sulfate contributed more to the haze formation in Beijing than mobile sources. This finding suggests that the haze formation mechanism in Shanghai is likely different from that in Beijing. VOCs and NO$_x$ are exclusively from local emissions whereas regional transport is a big source of SO$_2$ under stagnant atmosphere due to different atmospheric lifetimes among SO$_2$, NO$_x$, and VOCs (Guo et al., 2014). Considering the relatively smaller contribution of sulfate, our results reveal that the accumulation and secondary transformation of local emissions likely played a dominant role in this haze formation.

3.3 Aerosol hygroscopicity and effective density during the observation period

Figure 4a displays a box chart of the mean hygroscopicity of each hygroscopic GF distribution for different sizes. Considering all of the GF distributions collectively, the hygroscopicity parameter κ increased with an increase of the dry diameter, with a mean κ of 0.161 at 40 nm and 0.338 at 300 nm. Assuming a two-component system of a model salt (ammonium sulfate, $\kappa_m = 0.53$) and an insoluble species ($\kappa = 0$), the volume fraction of hygroscopic species (ε) can be obtained based on the Zdanovskii–Stokes–Robinson mixing rule. The average ε was 0.3 for 40 nm particles, suggesting that the primary particles or initial growth of freshly generated particles were dominated by non-hygroscopic species. In contrast, the 300 nm particles were extremely aged, with more-hygroscopic species.

Generally, HTDMAs measure dry particles smaller than 300 nm due to technical limitations, and it is common that particle hygroscopicity increases with the increase of particle size (Liu et al., 2014; Swietlicki et al., 2008). The increase of particle hygroscopicity with particle size was attributed to the addition of more-hygroscopic SNA (Swietlicki et al., 2008; Ye et al., 2010). The very few measurements for dry particles larger than 300 nm showed different size dependencies. Gasparini et al. (2006) reported that particle hygroscopicity first increased and then decreased with the increase of

Figure 3. Variations of sulfate, nitrate, and ammonium concentrations as a function of PM$_{1.0}$ mass loading.

Figure 4. Box plots showing hygroscopicity parameter and effective density at each dry diameter over the whole observation. The whiskers represent the 5th and 95th percentile, the two borders of box display the 25th and 75th percentile, and the band in each box denotes the median.
particle size, peaking at the diameter of 300 nm. In contrast, Z. J. Wu et al. (2016) reported that particle hygroscopicity increased with particle diameter in the range of 35–350 nm. In this study, the determination size range was extended to 400 nm and the mean κ s of 300, 350, and 400 nm particles were nearly equal. We attribute the different size dependencies of hygroscopicity among various measurement sites to the total emissions of SO_2 and NO_x, gas precursors of hygroscopic sulfate and nitrate. It is noticeable that the 5th percentile hygroscopicity decreased for dry diameter larger than 300 nm, likely due to the presence of the smallest dust particles (Gasparini et al., 2006). The variability of hygroscopicity parameter κ was much greater for 40 nm particles. The particle population with $\kappa < 0.1$ was attributed to fresh traffic particles (Ye et al., 2013). The considerable percentile of $\kappa < 0.1$ indicates that the 40 nm particle population was sometimes dominated by near-hyrophobic particles.

Figure 4b displays a box chart of median effective density for different particle sizes. The median effective density varied in the narrow range of $\rho_{\text{eff}} = 1.35–1.41$ g cm$^{-3}$ for 40–300 nm particle population. The size dependency of particle effective density varied in the literature. Hu et al. (2012) and Yin et al. (2015) reported that effective density of the particles increased as particle size increased while a opposite trend was observed by Geller et al. (2006) and Spencer et al. (2007). The different trends were attributable to the variable fraction of lower-density mode particles ($\rho_{\text{eff}} < 1.0$ g cm$^{-3}$). The densities of the secondarily produced ($\text{NH}_4)_2\text{SO}_4$, NH_4HSO_4, and NH_4NO_3 are ~ 1.75 g cm$^{-3}$. The effective density of organic aerosols varies mostly in the range of 1.2–1.6 g cm$^{-3}$, depending on their source origins (Malloy et al., 2009; Turpin and Lim, 2001; Dinar et al., 2006). The lower-density particles with $\rho_{\text{eff}} < 1.0$ g cm$^{-3}$ were attributable to fresh or partially aged traffic-related particles because the number fraction of the lower-density group in urban area was found to be consistent with the concentration of NO (indicator of traffic) (Levy et al., 2013; Rissler et al., 2014). Although the dominant accumulation-mode particles have an effective density greater than Aitken-mode ones, the presence of a lower effective density group associated with traffic emissions might decrease the mean effective density to a value lower than that of Aitken-mode particles (Levy et al., 2014). Yin et al. (2015) reported that effective density distributions were dominated by a single peak in the previous observation. In contrast, a lower-density peak below 1.0 g cm$^{-3}$ was often present in this observation, decreasing the mean effective density of externally mixed aerosols.

3.4 Characteristics of a representative PM episode

As shown in Fig. 2, the PM episode from 7 to 12 January was a representative case of severe haze formation and elimination processes. It can be divided into clean (7 January), transition (8 January), haze (9–11 January), and post-haze (12 January) periods. During the transition from the clean period to haze period (7 to 8 January), both PM$_{1.0}$ and PM$_{2.5}$ concentrations increased slightly, with an aver-
Y. Xie et al.: Insight into winter haze formation mechanisms

age PM$_{1.0}$/PM$_{2.5}$ ratio of 0.65. A sharp increase in PM$_{2.5}$ (of 125 µg m$^{-3}$) was observed from 06:00 to 12:00 LT on the morning of 9 January. During the haze period, the concentration of PM$_{2.5}$ exceeded 115 µg m$^{-3}$ (medially polluted level, HJ633-2012) for 63 h. On 11 January, the hourly PM$_{2.5}$ concentration exceeded 250 µg m$^{-3}$, corresponding to the severely polluted level.

Figure 5 displays the temporal profile of particle size distribution, along with the measured PM$_{1.0}$ concentration during the representative PM episode. The calculated PM concentrations (PM$_{cal}$) were obtained based on the particle size distribution and average effective density of 1.39 g cm$^{-3}$ in the range of 14–600 nm measured in this study. It is noticeable that the temporal trends in mass concentrations of PM$_{cal}$ and PM$_{1.0}$ are highly consistent. In contrast to the fact that particle size distribution was dominated by nanoparticles during the clean period, the burst of Aitken-mode particles and subsequent continuous growth to approximately 200 nm in diameter was observed three times during the haze period, indicating that the presence of numerous larger particles is likely responsible for the severe particle pollution (Guo et al., 2014). The importance of larger particles in haze formation is also illustrated by the contour plot of the particle volume size distribution. The difference of particle number concentration between transition and haze periods was less significant, whereas the volume concentration increased considerably during the haze period. This feature clearly demonstrates that the haze formation was closely correlated with particle growth and elevated number of larger particles.

Interestingly, the particle mass concentration was sensitive to variations of wind speed and PBL. During the transition and haze periods, the wind speed decreased considerably with insignificant change in prevailing wind (Fig. S1). This finding indicates that outside transportation became less and less significant. It is noteworthy that the temporal evolution of the particle mass concentration was inversely correlated with the PBL height. The decreasing PBL provided a stagnant atmosphere that favored the accumulation of local emissions. This finding reveals that the severe haze pollution was likely triggered by the adverse meteorological conditions. The impact of decreasing PBL height on haze formation can also be evidenced by the variations of trace gaseous species (Fig. S2). During the PM episode, the concentrations of NO$_2$, SO$_2$, and CO displayed variation trends similar to that of the particle concentration. The fluctuations of trace gas concentrations were caused by primary emission and secondary processes. Noticeably, the concentration of NO increased dramatically in rush hours during the haze period whereas it fluctuated slightly during the clean period, indicating that local emissions were easily accumulated under stagnant atmosphere. In addition, the maximum concentration of O$_3$ remained considerably higher during daytime, whereas it decreased significantly at night. The most plausible explanation is that O$_3$ was consumed rapidly by the accumulated trace gases, such as NO$_x$, and VOCs.

3.5 Variations of hygroscopicity and effective density during the PM episode

Figure 6 shows the averaged hygroscopicity and effective density for different pollution periods of the PM episode. Regardless of the pollution period, the nearly hydrophobic particles were externally mixed with some hygroscopic particles. During the clean period, the more-hygroscopic particles dominated the 40 nm particle population, indicating that the near-hydrophobic primary particles were rapidly dispersed due to atmospheric dilution. The number fraction of the near-hydrophobic group for different sizes increased as the PM episode developed, indicative of the increasing accumulation of local emissions. Notably, the increase of the near-hydrophobic particles with the evolution of the PM episode become less significant as particle size increased, indicating that primary emission exerted a more significant impact on smaller particles than on larger ones. The median diameter of nascent traffic particles from various gasoline sources ranged...
between 55 and 73 nm with an average of 65 nm (Momenimovahed and Olfert, 2015). Therefore, the number fraction of the near-hydrophobic particles larger than 200 nm is not sensitive to the accumulation of traffic emissions.

Interestingly, the variations of particle effective density for different sizes are in good agreement with the hygroscopicity. The dominant peak of effective density distribution appeared at $\rho_{\text{eff}} \approx 1.5 \text{ g cm}^{-3}$ for 40 nm particles in the clean period, indicating that they are highly aged with hygroscopic inorganic salts (Yin et al., 2015). As the episode developed, the mean density shifted to lower values, indicating the increasing contribution of lower-density carbonaceous materials. The averaged density distribution was broadened as the episode developed, suggesting that it could be deconvolved into two groups and that the number fraction of the low-density group increased. This finding revealed that the lower-density particles are less hygroscopic whereas the larger-density group corresponds to the more-hygroscopic one. In addition, the variations of hygroscopicity and effective density coincided with the evolution of PBL height, indicating that the increasing accumulation of local emissions due to adverse atmospheric conditions is likely responsible for the enhancement of those near-hydrophobic and lower-density particles.

As shown in Fig. 5, three “banana-shaped” evolutions of the particle size distribution were identified in the representative PM episode. The banana-type contour plot of particle size distributions is a characteristic of NPF events and traditionally regarded as one of the most important criteria for identifying NPF (Xiao et al., 2015; Dal Maso et al., 2005; Levy et al., 2013; Zhang et al., 2012). Atmospheric NPF is often defined by the burst of nucleation-mode particles and subsequent growth of the nuclei to larger particles (Zhang et al., 2012; Kulmala et al., 2012). Gas-phase sulfuric acid produced via oxidation of SO$_2$ by OH radical plays a dominant role in the NPF events. NPF is typically

3.6 Evolutions of hygroscopicity and effective density with particle growth

As shown in Fig. 5, three “banana-shaped’’ evolutions of the particle size distribution were identified in the representative PM episode. The banana-type contour plot of particle size distributions is a typical characteristic of NPF events and traditionally regarded as one of the most important criteria for identifying NPF (Xiao et al., 2015; Dal Maso et al., 2005; Levy et al., 2013; Zhang et al., 2012). Atmospheric NPF is often defined by the burst of nucleation-mode particles and subsequent growth of the nuclei to larger particles (Zhang et al., 2012; Kulmala et al., 2012). Gas-phase sulfuric acid produced via oxidation of SO$_2$ by OH radical plays a dominant role in the NPF events. NPF is typically
Figure 8. Particle hygroscopicity and density during the two particle growth processes.
completely suppressed when preexisting particles is abundant, because gas-phase sulfuric acid is rapidly lost to the surfaces of preexisting aerosols (Zhang et al., 2012). In addition to sulfuric acid, low-volatility organic species and interaction between sulfate and organics are important for NPF (Zhang et al., 2004; Zhao et al., 2009). However, the possibility of NPF can be ignored in this study due to the absence of the burst of nucleation-mode particles and the high concentration of PM$_{1.0}$. The burst of Aitken-mode particles in the current study may be attributable to rapid accumulation of traffic emissions during rush hours under stagnant atmospheric conditions. The banana-shaped particle growth in the time evolution of particle size distribution from the Aitken-mode size range to accumulation-mode size range was primarily due to coagulation and condensation processes. This feature provided an excellent opportunity to reveal the chemical mechanism of particle growth during the PM episode.

The first banana-shaped evolution of the particle size distribution occurred from approximately 05:00 to 15:00 LT on 9 January, with an increase of the particle number concentration (N_{total}) from 1.7×10^4 to 3.4×10^4 cm$^{-3}$ followed by a decrease until 17:00 LT (Period 1). The second banana-shaped evolution occurred from approximately 18:00 LT on 9 January to approximately 12:00 LT on 10 January (Period 2). The N_{total} increased from 2.1×10^4 to 4.2×10^4 cm$^{-3}$ within 3 h, followed by gradual decrease of N_{total} in contrast to a continuous increase of the particle mass concentration. During the growth process, the mode diameter of the particle population increased from below 40 nm to approximately 200 nm. The third banana-shaped evolution began in the evening rush hours on 10 January, with the continuous increase of PM mass concentration for 12 h (Period 3). The latter two banana-shaped evolutions lasted long enough to trace the changes in hygroscopicity and effective density due to particle growth.

Figure 8 illustrates the evolution of particle hygroscopicity and effective density during periods 2 and 3. During the initial stage, the measured GF and effective density distributions were both bimodal, with a dominant peak at GF = \sim 1.0 and $\rho_{\text{eff}} = \sim$ 1.0 g cm$^{-3}$, respectively. In a previous study, we found that the number fraction of near-hydrophobic particles varied with the traffic exhaust (Ye et al., 2013). Moreover, laboratory studies showed that the effective density of 50 nm vehicle particles was approximately 1.0 g cm$^{-3}$ (Olfert et al., 2007; Park et al., 2003; Momenimovahed and Olfert, 2015). These findings indicate that the initial burst of Aitken-mode particles is attributable to the presence of enhanced traffic-related emissions. In contrast, the number fraction and GF of the more-hygrosopic group increased with the growing particle size, indicating the addition of hygroscopic inorganic species. The variation of the effective density of the particles was similar to that of the hygroscopicity, indicating the increase of high-density materials. In general, inorganic sulfate and nitrate are more hygroscopic and denser than soot particles or organic aerosols (Yin et al., 2015). These findings suggest that secondary sulfate and nitrate increased with the growing particle size, indicating the importance of the conversion of SO$_2$ and NO$_x$ in particle growth. This conclusion is supported by the largest SNA concentration in PM$_{1.0}$ during the PM episode (31.3 µg m$^{-3}$ on 10 January and 23.8 µg m$^{-3}$ on 11 January). Considering that the concentration of nitrate was much higher than that of sulfate during the haze event, the increase of hygroscopicity was dominated by the addition of nitrate.

4 Conclusions

Particle size distribution, size-resolved hygroscopic growth, and effective density of sub-micrometer aerosols were determined using a HTDMA-APM system, along with measurements of cascade impactor samples and single particle mass spectrometry in urban Shanghai during winter 2014.

The PM episode exhibited a periodic cycle of \sim 5 days. The average concentration of PM$_{2.5}$ was 87 ± 67 µg m$^{-3}$, with approximately 62 % of hourly PM$_{2.5}$ concentrations exceeding the Chinese Grade II guideline. Both secondary inorganic salts and carbonaceous aerosols contributed substantially to haze formation because the mass ratio of SNA / PM$_{1.0}$ fluctuated slightly around 0.28 during the observation period. Nitrate became the most abundant ionic species at PM$_{1.0}$ > 40 µg m$^{-3}$, indicating that the sources of nitrate contributed more to haze formation in Shanghai than did SO$_2$.

The severe haze pollution was likely triggered by the adverse meteorological conditions, which favored the accumulation of local emissions and subsequent rapid growth to larger particles. As the PM episode developed, the number fraction of nearly hydrophobic particles of different size increased, consistent with decrease of the mean effective density. Both hygroscopicity and effective density of the particles were found to increase considerably with growing particle size, indicating that secondary aerosol formation was one of the most important contributors to particle growth. Our results suggest that the accumulation of local emissions under adverse meteorological conditions and subsequent rapid particle growth by secondary processes are primarily responsible for the haze pollution in Shanghai during wintertime.

Data availability. The data in the study are available from the authors upon request (yexingnan@fudan.edu.cn).

The Supplement related to this article is available online at https://doi.org/10.5194/acp-17-7277-2017-supplement.

Competing interests. The authors declare that they have no conflict of interest.
Acknowledgements. This work was supported by the National Natural Science Foundation of China (21477020, 21527814, and 91544224) and the National Science and Technology Support Program of China (2014BAC22B01).

Edited by: R. Zhang
Reviewed by: two anonymous referees

References

Y. Xie et al.: Insight into winter haze formation mechanisms

Atmos. Chem. Phys., 17, 7277–7290, 2017

