Southern Hemisphere Origins for Interannual Variations of Snow Cover over the Western Tibetan Plateau in Boreal Summer

JUAN DOU

Earth System Modeling Center, Nanjing University of Information Science and Technology, Nanjing, and Institute of Atmospheric Sciences, Fudan University, Shanghai, China

ZHIWEI WU

Institute of Atmospheric Sciences, Fudan University, Shanghai, China

(Manuscript received 18 May 2017, in final form 18 June 2018)

ABSTRACT

The climate response to the Tibetan Plateau (TP) snow cover (TPSC) has been receiving extensive concern. However, relatively few studies have been devoted to revealing the potential factors that can contribute to the TPSC interannual variability, especially during boreal summer. This study finds that the May Southern Hemisphere (SH) annular mode (SAM), the dominating mode of atmospheric circulation variability in the SH extratropics, exhibits a significant positive relationship with the interannual variations in western TPSC during boreal summer. Observational analysis and numerical experiments manifest that the signal of the May SAM can be “prolonged” by a meridional Indian Ocean tripole (IOT) sea surface temperature anomaly (SSTA) via atmosphere–ocean interaction. The IOT SSTA pattern persists into the following summer and excites anomalous local-scale zonal-vertical circulation. Subsequently, a tropical dipole rainfall (TDR) mode is induced with precipitation anomalies between the tropical western Indian Ocean and the eastern Indian Ocean–Maritime Continent. Rossby wave ray tracing diagnosis reveals that the wave energies, generated by the latent heat release of the TDR mode, can propagate northward into the western TP. As a response, abnormal cyclone (or anticyclone) and upward (or downward) movement are triggered over the western TP, providing favorable dynamical conditions for more (or less) TPSC. Moreover, the strong May SAM is usually followed by a cold air temperature anomaly over the western TP in summer, which is unfavorable for snow-cover melting, and vice versa. In brief, the IOT SSTA plays an “ocean bridge” role and the TDR mode plays an “atmosphere bridge” role in the process of the May SAM impacting the following summer TPSC variability. The results may provide new insight into the cross-equatorial propagation of the SAM influence.

1. Introduction

As the third pole of Earth, the Tibetan Plateau (TP) is a huge cooling source in the midtroposphere in the cold seasons and a tremendous heating source in the warm seasons (Yeh et al. 1957; Ye and Wu 1998). TP snow cover (TPSC) greatly affects the thermal characteristics of the plateau through its high albedo and low thermal conductivity (Luo and Yanai 1984; Namias 1985; Cohen and Rind 1991; Xu and Dirmeyer 2013), and then exerts a huge influence on the global and regional climate change (e.g., Barnett et al. 1988, 1989; Yasunari et al. 1991; Zhao and Moore 2004; Lin and Wu 2011, 2012). The potential impact of TPSC variability on remote climate anomalies, especially during winter and spring, has been studied extensively (e.g., Bamzai and Shukla 1999; Bamzai and Marx 2000; Qian et al. 2003; Zhang et al. 2004; Zhao et al. 2007; Zhu et al. 2015; Wang et al. 2017; Xiao and Duan 2016).

However, a comparatively small number of studies have concentrated on the boreal summer TPSC variability and its climatic effects. Actually, snow cover can be sustained during boreal summer over the western and southern edge of the TP where there are large mountain ridges and it shows a strong interannual variation (Pu et al. 2007; Liu et al. 2014a; Wu et al. 2016a). Although snow cover in summer
occupies a relatively narrow area around the TP compared with that in winter, it may exert a more significant influence on the remote climate systems than anticipated. Some researchers have discovered that the TPSC in summer can indirectly contribute to the remote climate anomalies (Wang et al. 2008; Wu et al. 2012) by changing the heterogeneous distribution of the atmospheric heating around the TP (Duan and Wu 2003; Zhao and Chen 2001). Meanwhile, the summer TPSC variability itself also plays a direct role in modulating the downstream climate anomalies. For example, Liu et al. (2014b) indicated that the summer TPSC is prominently positively correlated to the interannual variability of simultaneous precipitation over the mei-yu–baiu area. Wu et al. (2012a) pointed out that the TPSC in summer can modulate the relationship between El Niño–Southern Oscillation (ENSO) and the East Asia summer monsoon (EASM). In addition, summer TPSC also can be notably responsible for the northern China heat wave frequency on decadal-to-interdecadal time scales (Wu et al. 2012b), as well as the interannual variations of Eurasia summer heat waves (Wu et al. 2016a). Hence, the interannual variability of TPSC in the boreal summer should not be overlooked.

What may give rise to the TPSC anomalies on the interannual time scale? Limited studies indicated that the slowly changing low-boundary forcings such as ENSO and the Indian Ocean dipole (IOD) may modulate the TPSC in winter (Shaman and Tziperman 2005; Yuan et al. 2009, 2012). Nevertheless, the factors that may generate the boreal summer interannual variations of TPSC are not quite clear. Considering the great impact of summer TPSC on climate change, it is essential to reveal the potential extra forcing that may contribute to the TPSC interannual variability in summer.

The Southern Hemisphere (SH) annular mode (SAM), also regarded as the Antarctic Oscillation, is the principal mode of SH extratropical circulation variability (Rogers and Van Loon 1982; Cai and Watterson 2002; Yuan et al. 2009, 2012). Nevertheless, the factors that may generate the boreal summer interannual variations of TPSC are not quite clear. Considering the great impact of summer TPSC on climate change, it is essential to reveal the potential extra forcing that may contribute to the TPSC interannual variability in summer.

The Southern Hemisphere (SH) annular mode (SAM), also regarded as the Antarctic Oscillation, is the principal mode of SH extratropical circulation variability (Rogers and Van Loon 1982; Cai and Watterson 2002; Yuan and Yonekura 2011). It is characterized by a zonal symmetric dipolar pattern of pressure or geopotential height anomalies between the subtropical and subpolar...
regions from the sea level to the stratosphere in the SH on weekly-to-centennial time scales (e.g., Trenberth 1979; Karoly et al. 1996; Gong and Wang 1999; Thompson and Solomon 2002; Marshall 2003; Thompson et al. 2005). Inevitably, the SAM exerts remarkable influences on the precipitation and temperature patterns in most fields of the SH, including South Africa (Reason and Rouault 2005), southern South America (Silvestri and Vera 2003), Australia (Hendon et al. 2007; Cai et al. 2011), and the Antarctic Peninsula (Marshall et al. 2006).

The fingerprint of the SAM may not be restricted to the SH; it can also stretch to the Northern Hemisphere (NH; e.g., Wu et al. 2009b, 2015; Zheng and Li 2012; Liu et al. 2015, 2016). The sea surface temperature (SST), with huge heat storage capacity and a comparatively strong persistence, has been generally considered to play an important “ocean bridge” role in the process of cross-equatorial transmitting of the SAM signal. For instance, Wu et al. (2015) revealed that the South Atlantic–Pacific (SAP) SST anomaly (SSTA) serves as a “recharger” to “prolong” the SAM influence. Nan and Li (2003) proposed that the Indian Ocean SSTA plays a crucial role in linking the spring SAM and the subsequent-season EASM and the related precipitation (Nan et al. 2009; Zheng et al. 2015). Recently, Dou et al. (2017) further demonstrated that the spring SAM signal can be imprinted into the Indian Ocean and then modulates the early boreal summer Indian summer monsoon rainfall. Moreover, the Atlantic Ocean SSTA also plays a significant role in bridging the spring SAM and the North American summer monsoon (Sun 2010), as well as the West African summer monsoon (Sun et al. 2010). Therefore, the SAM may provide a fresh potential predictability source for climate anomalies in the NH.

Then, can the SAM influence the interannual variations of TPSC in boreal summer? And if so, what is the corresponding physical mechanism? To settle the above issues, the following manuscript is organized as follows: The datasets, model, and methodology are introduced in section 2. The observed relationship between the May SAM and summer TPSC is diagnosed in section 3. In
section 4, an atmospheric general circulation model (AGCM) and Rossby wave ray tracing method are applied to give us a deeper insight into the mechanisms. In the final section, the main conclusions are summarized and some outstanding issues are presented.

2. Datasets, model, and methodology

a. Datasets

The datasets applied in the present paper include 1) monthly snow-cover area extent data during 1979–2013 taken from the Global Snow Laboratory (Rutgers University; http://climate.rutgers.edu/snowcover; Robinson et al. 1993; Robinson and Frei 2000; Estilow et al. 2015); 2) monthly rainfall data acquired from the Global Precipitation Climatology Project (GPCP) with 2.5° × 2.5° grid since 1979 (Adler et al. 2003); 3) monthly circulation data, gridded at 1.5° × 1.5° resolution, provided by the European Centre for Medium-Range Weather Forecasts (ECMWF) interim reanalysis (ERA-Interim) dataset (Dee et al. 2011); 4) monthly SST data from the NOAA improved Extended Reconstructed SST, version 4, (ERSST. v4) with 2° × 2° resolution (Huang et al. 2015); 5) surface heat flux data from the Japanese 55-year Reanalysis (JRA-55) and the ocean surface current data from NCEP Global Ocean Data Assimilation System (GODAS) during 1980–2012 (Behringer et al. 1998); 6) monthly SAM index (SAMI) is designated as the monthly mean difference between the sea level pressure (SLP) anomalies at six stations around midlatitude and six stations near the subpolar region (Marshall 2003), which performs better on the hydroclimate investigation (Ho et al. 2012); The Niño-3.4 index is implied to represent the ENSO variability, that is, the averaged SST over the area (5°S–5°N, 170°–120°W; Trenberth 1997); the index to describe the IOD variability is designated as the SST difference between the western tropical Indian Ocean (10°S–10°N, 50°–70°E) and the eastern tropical Indian Ocean (10°S–0°, 90°–110°E; Saji et al. 1999). The period studied in this work is from 1979 to 2013. The summer in this paper indicates the months of June–August (JJA).

b. Model

Numerical experiments carried out in this work are based on an AGCM model, the fifth generation Max
Planck Institute model in Hamburg (ECHAM5), which is developed on the ECMWF model (Roeckner et al. 2003). The resolution is triangular 63 (T63) and 19 vertical levels. The initial SST forcing fields are provided by Atmospheric Model Intercomparison Project (AMIP) II SST conditions.

c. Methodology

To emphasize the interannual variability, linear trends of all time series of the aforementioned data have been removed, including circulation and regression fields. A variety of statistical methods were employed to investigate the influence of the May SAM on summer TPSC, such as singular value decomposition (SVD), simultaneous and lead–lag correlation, composite analysis, and regression analysis. To investigate the Rossby wave characteristics of large-scale circulation, the eddy streamfunction was calculated by subtracting the zonal-mean component. To analyze the possible wave energy propagation paths in response to the anomalous tropical heating, stationary wave ray tracing theory in horizontally nonuniform basic flow was employed. It has been widely used to trace the Rossby wave train and to explain the atmospheric teleconnection mechanisms (Wu et al. 2016b; Zhou et al. 2018). The detailed theoretical analysis and formula derivation are referred to Li and Li (2012), Li et al. (2015), and Zhao et al. (2015).

3. Summer TPSC associated with the May SAMI

Figure 1a displays the spatial distribution of the climatological percentage (contours) and standard deviations (shadings) of the year-to-year variability of summer TPSC during the period 1979–2013. Although snow cover obviously melts over the northeastern TP at lower altitudes during summer, large snow-cover centers are located in its western and southern edges with
large mountain ridges. Strong standard deviations centers also occupy the western plateau and southern flank of the TP. Overlapped with the outstanding year-to-year snow-cover changes, large areas of anomalous TPSC regressed against the May SAMI are centered in the western TP and adjoining regions (Fig. 1b). In consideration of ENSO, the IOD effect on the TPSC and the partial-regressed JJA TPSC patterns against the May SAMI are shown in Figs. 1c and 1d. With the previous autumn [September–November (SON)] IOD and winter [December–February (DJF)] ENSO signals eliminated, significant anomalies still dominate over the western TP and the adjacent areas. This implies a strong May SAM is usually associated with more western TPSC in the following season, and vice versa.

To further survey the coupling association between the May SAM and boreal summer TPSC, Fig. 2 displays the first SVD mode of the May SLP anomalies in the

![Fig. 6. (a) May and (b) JJA SSTA regressed (shadings; °C) against the detrended May SAMI. (c),(d) As in (a),(b), but for the partial regression patterns with the DJF ENSO signal removed. The SST anomalies included in the bold black curves exceed the 90% confidence level. The IOTI is obtained by projecting the regressed SST field in the Indian Ocean (65°–5°S, 60°–130°E) onto the normalized SST pattern in the same area.](image)
extratropical SH (90°–20°S, 0°–360°) and the following boreal summer’s snow-cover anomalies over the TP (25°–45°N, 70°–105°E). The first mode interprets 47.3% of the total covariance. The two time series have a close connection with a correlation coefficient of 0.72 above the 99% confidence level based on the Student’s t test. The left homogeneous correlation pattern reflects a seesaw structure with negative SLP over the polar region and a positive belt over the mid-latitude in the SH (Fig. 2a), which indicates a strong SAM phase as recorded by Thompson and Wallace (2000) and Thompson et al. (2000). Correspondingly, the snow cover over the western plateau shows a monosign pattern (Fig. 2c). The right heterogeneous correlation pattern manifests such that the most significant positive anomalies dominate over the western TP and surrounding regions when the May SAM is in its positive polarity (Figs. 2b,d). Combined with the result in Fig. 1, we can infer that the May SAM may noticeably contribute to the variability of western TPSC in the following boreal summer.

To quantitatively describe the western TPSC variability, a JJA TPSC index (TPSCI) is defined as the averaged snow cover in the red box in Fig. 1a (30°–43°N, 70°–83°E). Figure 3a shows the temporal variations of the May SAMI and the JJA TPSCI from 1979 to 2013. The TPSCI is closely related to the May SAMI with the correlation coefficient reaching 0.66 beyond the 99% confidence level. They show a prominent in-phase relationship, particularly during the period of

Fig. 7. (a) JJA 500-hPa geopotential height (Z500; shadings) and horizontal winds (UV; vectors) correlated with the detrended IOTI defined in Fig. 5. (b) As in (a), but for the partial correlation with the DJF ENSO removed. The areas with correlation coefficients significant above 90% confidence level are shaded. The wind vectors plotted exceed the 90% confidence level.
1988–95. Figure 3b displays the lead–lag correlations map between the JJA TPSCI and the SAMI time series from December (−1) to September (0). Here “−1” represents the previous year and “0” denotes the coinstantaneous year. Though the SAM provides precursory conditions from the preceding December to July, only the May SAMI is significantly related to the JJA western TPSC.

The above analysis indicates that the positive relationship between the May SAM and boreal summer TPSC interannual variability is statistically robust. However, as the intrinsic feature of the atmosphere, the SAM itself is short of sustainability (Wu et al. 2009a,b). How can the preceding May SAM signal propagate from the SH into the NH and then affect the TPSC variability in the following season?

4. Physical mechanisms

a. The “ocean bridge” role of SSTA

It is widely considered that the slowly varying lowboundary forcing such as a SSTA with strong heat memory capability can increase the persistence of the atmosphere signature (Sen Gupta and England 2006, 2007). In view of this, we speculate that the SSTA might play an “ocean bridge” role in extending the SAM influence and then affect the remote climate anomalies. The strong surface-wind signal related to the SAM can influence the ocean surface temperature through the surface currents and air–sea heat fluxes. The cloud associated with the SAM can also affect the radiative flux to the ocean (Hall and Visbeck 2002; Verdy et al. 2006; Salté et al. 2010). Thus we have investigated the ocean currents and surface heat fluxes associated with the SAM to illuminate their role in the generation of SST anomalies.

First, the overlying atmospheric circulation associated with the May SAM has been examined. As shown in Fig. 4a, the strong SAM phase is characterized by a seesaw pattern with high pressure in midlatitudes and low pressure anomalies in high latitudes over the south Indian Ocean. Correspondingly, intensive westerly flows prevail over high latitudes and easterly winds over midlatitudes (black vectors), which will change the climate background states. Because of a balance between the Coriolis force and the drags generated by the wind and the water, the westerly surface winds over high latitudes drive Ekman drift to the north, resulting in the northward flow, while easterlies over
midlatitudes actuate Ekman drift to the south, causing southward currents (Fig. 4b). Over the tropical–subtropical south Indian Ocean, surface currents display clockwise movement with divergent surface flow away from 20°S. This leads to surface flow convergence and downward motions centered on 45°S, and divergence and upwelling near 20° and 60°S (figure not shown), which may drive cold water accumulated in the subpolar region and subtropics and warm water accumulated in midlatitudes.

To further illuminate the mechanism behind the changes in the ocean temperature related to the SAM, we have inspected the surface heat flux, including the Ekman heat fluxes (heat advection by the anomalous Ekman currents in the upper ocean), net radiation (net longwave + net shortwave), and surface turbulent heat fluxes (latent + sensible heat fluxes) related to the SAM. Ekman flux in the upper ocean was estimated from wind stress and SST field from the reanalysis. Ekman flux \(\mathbf{U}_{ek} \) is given by:

\[
\mathbf{U}_{ek} = \frac{1}{2 \pi f} \left(\mathbf{t}_x - \mathbf{t}_y \right),
\]

where \(\mathbf{U}_{ek} \) is the Ekman transport, \(\mathbf{t}_x \) and \(\mathbf{t}_y \) are the zonal and meridional wind stress, \(\mathbf{SST} \) is the SST gradient, \(f \) is the Coriolis parameter, and \(\rho \) and \(C_p \) are the density and specific heat capacity of seawater, respectively.

The Ekman heat transport generally shows a zonal pattern in response to the SAM: significant negative Ekman heat flux anomalies control the subpolar region, but positive anomalies are observed in midlatitudes (Fig. 5a), which favor the formation of cold SST in high latitudes and warm SST in midlatitudes. The negative Ekman heat flux around the subtropical region becomes insignificant, which implies the Ekman transport related to the SAM might be limited to mid–high latitudes. This pattern is in accordance with the associated changes in the overlying flow over the mid–high latitudes mentioned above (Fig. 4). More important, however, is the response of the net radiative (Fig. 5b) and turbulent heat fluxes (Fig. 5c), which acts to warm and cool the surface ocean. Both the net radiative and turbulent heat fluxes anomalies basically exhibit a tripole pattern over the Indian Ocean with significant negative anomalies (negative values indicate the ocean losing heat) over the basin south of the Australian and subtropical region and the positive anomalies over midlatitudes. The intensity of the flux is largely dominated by air–sea flux anomalies with a relatively weaker contribution from the net radiation and Ekman transport (note the color scales are different). Overall, the net heat flux (sum of the above three heat flux; Fig. 5d) associated with the SAM, showing a tripole pattern over the Indian Ocean, plays a substantial role in generating the tripole SSTA (Fig. 6a).

The above results indicate that the May SAM signal can be imprinted into the distinguished meridional Indian
Ocean tripole (IOT) pattern through the thermodynamic and dynamic processes. This tripole pattern can persist from May to the following season because of the thermal inertia of the oceans (Fig. 6). Meanwhile, with the ENSO signal removed via partial regression, the IOT SSTA patterns are still statistically robust (Figs. 6c,d), which means that the processes described above are independent of ENSO. We have also checked the April SSTA related to the May SAM; a similar tripole pattern appears in April with fewer significant areas. But if we remove the May SAM signature, the April SSTA cannot persist to the following summer. This implies that the JJA IOT SSTA is indeed closely related to the May SAM (figures not shown).

To quantitatively depict such SAM-related SSTA variability and its impact on TPSC during boreal summer, a simple IOT index (IOTI) is obtained by projecting the regressed SST field in the Indian Ocean (65°–5°S, 60°–130°E) onto the normalized SST pattern in the same area. The correlation coefficient between the May SAMI and IOTI reaches 0.63, exceeding 99.9% confidence level based on the Student’s t test. Such a consistency allows us to interpret the IOT SSTA as the ocean “memory” effect to elongate the May SAM influence. We next inspect the JJA IOTI-related atmosphere circulation around the TP. Figure 7a shows the simultaneous correlation between the JJA IOTI and horizontal winds (vectors) as well as geopotential height (shadings) at 500 hPa. A prominent cyclonic circulation associated with a positive IOTI prevails over the western TP, even after the ENSO signal was removed. Figure 8a displays the vertical cross-section between the IOTI and JJA meridional wind section averaged over the western TP (60°–85°E). Enhanced local-scale meridional circulation is triggered with ascending motions prevailing over the western TP. These circulation anomalies related to the IOTI offer dynamic conditions for TPSC anomalies.

The question is how the signature of the IOT SSTA associated with the May SAM can pass through the equator and then induce the atmospheric circulation anomalies over the TP. To solve this issue, we need to clarify the dynamic structures of the JJA circulation pattern related to the IOT SSTA. Figure 9a shows the lower-level circulation anomalies associated with the IOTI. A positive IOT SST pattern with negative SST anomalies in the tropical–subtropical south Indian Ocean is followed by high pressure and low pressure over the western tropical Indian Ocean (TWIO) and the eastern Indian Ocean–Maritime Continent (EIOMC), respectively. This pattern is accompanied by surface divergence over the TWIO and convergence over the EIOMC. It can be further demonstrated in Fig. 9b; significant positive anomalies of 200-hPa velocity potential prevail over the TWIO along with anomalous wind divergence at 1000 hPa. Over the EIOMC, the situation is
just opposite. Consequently, enhanced local-scale zonal circulation is induced with abnormal downward currents (vectors in Fig. 8a) prevailing over the TWIO region (10°S–10°N) and upward currents (vectors in Fig. 8b) over the EIOMC (100°E–140°E). The situation remains significant after the ESNO effect is excluded (figure not shown). These anomalous circulations associated with the IOTI may lead to an abnormal dipole rainfall pattern with significant positive anomalies in the EIOMC and negative anomalies in the TWIO (Fig. 10a). This rainfall mode still exists after the effect of ENSO and the IOD are removed (Figs. 10b,c).

b. Numerical experiments

To further examine the atmospheric circulation anomalies forced by the IOTI, three numerical experiments were executed with the ECHAM5 model described in section 2. One was the control run driven by the historical SST; the others were the sensitive runs forced by the IOTI anomalous forcing. To mimic the diabatic heating influence of the SSTA, the composited observational SSTA between the high and low May SAMI (high minus low) was imposed on the historical SST over the Indian Ocean with positive IOTI forcing, while the inverse case was imposed under the negative run. Note that a high (low) SAMI is measured by 0.8 standard deviations. All three tests were integrated for 30 years from 1969 to 1998, and the ensemble mean of the last 20 years was employed for eliminating the model spinup.

The simulated climatological circulation patterns are approximately in conformity with the observation (figure not shown). The simulated results in response to the IOTI forcing basically capture the major characteristics mentioned above. The positive IOT forcing excites high pressure anomalies over the TWIO along with positive velocity potential (VELP200) and low pressure in the EIOMC with negative VELP200 (Figs. 9c,d). The negative center of VELP200 over the EIOMC slightly moves to the north compared with the observation. Subsequently, enhanced zonal–vertical circulation is induced with descending anomalies prevailing over the TWIO region and ascending anomalies over the EIOMC (vectors in Fig. 11). These then provide a

Fig. 11. (a) Composite differences of JJA meridional circulation (vectors; m s⁻¹) averaged over the Indian Ocean (60°E–85°E) and (b) zonal–vertical circulation (vectors; m s⁻¹) averaged over the tropical region (15°S–10°N) response to the high and low IOTI forcing in the ECHAM5 model. The vectors represent the vertical and meridional components in (a) and vertical and zonal components in (b). The shaded areas denote the climatological mean of vertical velocity (Pa s⁻¹).
precursory condition for fewer precipitation anomalies over the TWIO and more precipitation over the EIOMC. The numerical experiments further verify that the IOT SSTA can modulate the tropical dipole rainfall variability through changing the tropical zonal–vertical circulation.

According to the analysis above, the IOT SSTA plays an “ocean recharger” role to restore the influence of the SAM and then regulates the tropical dipole rainfall (TDR) mode. However, we mainly focus on how the SAM can affect the circulation around the TP. Does the TDR play a bridging role in this process?

c. The “atmosphere bridge” role of the TDR

Tropical latent heat release related to rainfall is widely considered to play a crucial role in developing planetary-scale low-frequency disturbances in the extratropical field (Gill 1980; Hoskins et al. 1977; Hoskins and Karoly 1981; Karoly 1989). Namely, the tropical anomalous heating generates an abnormal vorticity source, which triggers Rossby wave propagation that induces teleconnection patterns in the extratropical regions.

Figure 12 shows the JJA eddy streamfunction associated with the tropical dipole rainfall index (TDRI; the difference between the blue and red boxes in Fig. 10d). A Gill-type response can be seen in the lower troposphere with a pair of westward-propagating Rossby cyclonic circulation anomalies over the tropical Indian Ocean and anticyclonic shear flow over the east of the Maritime Continent, the upper troposphere with opposite sign at 250 hPa. At midlevels, similar features to the 850 hPa are observed with the locations slightly moving to the west. The most significant cyclonic circulation anomalies around the western TP related to the rainfall occur in the mid–low troposphere.

To further illustrate the extratropical response to the tropical anomalous heating associated with the TDR, the stationary wave ray tracing method mentioned above was applied. Figure 13 presents the stationary wave ray paths of zonal wavenumber 3 in the Indian Ocean and Maritime Continent in different background climate flows. At the upper level, the wave source in the two regions can only spread to the SH. Under the 500-hPa flow, the wave packets initiated in the Indian Ocean are difficult to spread out, while parts of the wave source over the Maritime Continent can spread to the western TP. At the lower troposphere, the wave energies in both the EIOMC and the TWIO can only propagate northward to the NH. The northwestward-propagating wave energies are trapped by the terrain when they reach the TP, which sets off the perturbation over there and then may transmit this effect into the upper-level atmospheric circulation. As a result, a positive TDRI induces abnormal cyclonic circulation (vectors in Fig. 12) and anomalous updrafts (vectors in Fig. 14) over western TP regions. In addition, the strong May SAM is usually accompanied by negative air temperature anomalies over the western TP (Fig. 15). These conditions may provide advantageous dynamic conditions for more snow cover over the western TP where
there are large mountains. The opposite situation appears during the negative TDRI. Overall, the wave source energy generated by the TDR anomalies can propagate northward into the western TP and, in turn, affect the circulation anomalies over there that regulate the snow-cover variability.

From the above analysis, we can conclude that the IOT SSTA plays an “ocean bridge” role to “prolong” the influence of the May SAM and then modulates the precipitation anomalies over there that regulate the snow-cover variability.

From the above analysis, we can conclude that the IOT SSTA plays an “ocean bridge” role to “prolong” the influence of the May SAM and then modulates the precipitation anomalies over the TWIO and the EIOMC, that is, the TDR mode. Subsequently, the TDR mode serves as an “atmosphere bridge” to propagate the wave energy into the western TP and then modulate the interannual variations of TPSC in boreal summer.

5. Summary and discussion

The TPSC-induced climatic effects have long been noticed, yet few studies have focused on what may explain the TPSC variability, particularly the boreal summer TPSC. TPSC in summer, exhibiting noticeable year-to-year variability and exerting potential influence on the remote climate, cannot be overlooked (Wu et al. 2012a,b; 2016a; Liu et al. 2014a). In this article, we investigated the potential influence of the previous May SAM on the boreal summer TPSC interannual variability.

Our analyses show that the May SAM has a significant positive correlation with the summer western TPSC, and the relationship is independent of ENSO or the IOD impact. Although the SAM itself may decay rapidly, the thermal inertia of the ocean plays an important bridging role to “elongate” the SAM influence. The evidence presented in the current paper indicates that the May SAM signature can be imprinted onto the IOT SSTA in the Indian Ocean through the thermodynamic and dynamic processes. The positive IOT SSTA pattern, related to the strong May SAM, persists from May to the following season and then inspires abnormal descending motions over the TWIO and ascending currents over the EIOMC. As a response, a positive TDR mode is triggered with positive precipitation over the EIOMC and negative anomalies over the TWIO, and vice versa. Tropical latent heat release associated with the rainfall anomalies can generate teleconnection patterns in the

![Stationary Rossby wave ray tracing](https://example.com/image.png)

Fig. 13. Stationary Rossby wave ray tracing (curves) of initial zonal wavenumber-3 wave in the JJA flow with the source at (15°S–10°N, 60°–90°E) and (15°S–10°N, 100°–150°E). The red dots indicate the starting points of wave rays in this area. The panels are based on the spherical harmonic smoothing (top) 250-hPa climatological flow, (middle) 500 hPa, and (bottom) 850 hPa.
extratropical regions (Hoskins and Karoly 1981). The results from the stationary wave ray tracing analysis indicate that the wave energy propagation related to the positive (or negative) TDR mode can extend into the western TP and then modulate the circulation over there, providing dynamical circumstance to the more (or less) western TPSC. Our conclusion suggests that the May SAM may provide another predictability source for the NH climate and offers additional insight into the interaction between the Northern and Southern Hemispheres.

This work proposes that the May SAM signal can be imprinted into the meridional IOT SSTA through air–sea interaction. In other months, can the SAM arouse a similar SSTA pattern? Besides, a zonal dipole SSTA pattern associated with the May SAM also exists in the SAP areas, which is similar to Fig. 4 in the work of Wu et al. (2015). As the meridional seesaw phenomenon between high and low latitudes, how can the SAM anomalies induce the zonal dipole SSTA pattern? These are still outstanding issues that need further investigation.

It also needs to be pointed out that the monthly SST data employed in this work are derived from the improved ERSST.v4, which is revised based on the ERSST.v3 (Huang et al. 2015). The observational analysis indicates that the May SAM is followed by a meridional tripole SSTA mode in the Indian Ocean. However, if the ERSST.v3 data are applied, a dipole SSTA pattern rather than a tripole SSTA mode associated with the May SAM appears in the Indian Ocean (Fig. 4; Dou et al. 2017). Compared with ERSST.v4, ERSST.v3 may be unable to capture the SSTA in SH high latitudes; this may need to be noted in further studies.

Acknowledgments. The authors are grateful to Prof. Jianping Li, Dr. Yanjie Li, and Dr. Sen Zhao for making the Rossby wave racing code readily available and the anonymous reviewers for their constructive comments, which helped improve the quality of the manuscript. Thanks to Rutgers University Global Snow Lab for providing snow-cover data. This work is jointly supported by the National Natural Science Foundation of China (NSFC; Grants 91637312, 91437216, and 41575075), the Ministry of Science and Technology of China (Grants 2016YFA0601801, 2015CB453201,
Fig. 15. (a) JJA air temperature (shading) averaged over the western TP (60°–85°E), correlated with the detrended May SAMI. (b) As in (a), but for the partial correlation with DJF ENSO removed. The dotted areas exceed the 90% confidence level. Contours denote the climatological mean of JJA air temperature (K) averaged over the western TP. Black shadings represent the mean height of the terrain (60°–85°E).

2015CB953904, and 2013CB430202), the Innovation Project of Jiangsu Province (Grant KYLX16_0929), and China Scholarship Council.

REFERENCES

Hall, A., and M. Visbeck, 2002: Synchronous variability in the Southern Hemisphere atmosphere, sea ice, and ocean resulting
Luo, H., and M. Yanai, 1984: The large-scale circulation and heat

——, Z. Zhou, and J. Liu, 2007: Variability of Tibetan spring snow and its associations with the hemispheric extratropical circulation and East Asian summer monsoon rainfall: An

