Impacts of Shipping on Air Pollutant Emissions, Air Quality, and Health in the Yangtze River Delta and Shanghai, China

Yan Zhang, Junlan Feng, Cong Liu, Junri Zhao, Weichun Ma, Cheng Huang, Jingyu An, Yin Shen, Qingyan Fu, Shuxiao Wang, Dian Ding, Wangqi Ge, Freda Fung, Kethural Manokaran, Allison P. Patton, Katherine D. Walker, and Haidong Kan

EXECUTIVE SUMMARY

Health Effects Institute
The Health Effects Institute is a nonprofit corporation chartered in 1980 as an independent research organization to provide high-quality, impartial, and relevant science on the effects of air pollution on health. To accomplish its mission, the institute:

- Identifies the highest-priority areas for health effects research;
- Competitively funds and oversees research projects;
- Provides intensive independent review of HEI-supported studies and related research;
- Integrates HEI’s research results with those of other institutions into broader evaluations; and
- Communicates the results of HEI’s research and analyses to public and private decision makers.

HEI typically receives balanced funding from the U.S. Environmental Protection Agency and the worldwide motor vehicle industry. Frequently, other public and private organizations in the United States and around the world also support major projects or research programs. HEI has funded more than 340 research projects in North America, Europe, Asia, and Latin America, the results of which have informed decisions regarding carbon monoxide, air toxics, nitrogen oxides, diesel exhaust, ozone, particulate matter, and other pollutants. These results have appeared in more than 260 comprehensive reports published by HEI, as well as in more than 1,000 articles in the peer-reviewed literature.

HEI’s independent Board of Directors consists of leaders in science and policy who are committed to fostering the public–private partnership that is central to the organization. For this report, the draft final report was reviewed by independent external peer reviewers, who were selected by HEI for their expertise.

All project results are widely disseminated through HEI’s website (www.health-effects.org), printed reports, newsletters and other publications, annual conferences, and presentations to legislative bodies and public agencies.
Impact of Shipping on Air Pollutant Emissions, Air Quality, and Health in the Yangtze River Delta and Shanghai, China

Yan Zhang1, Junlan Feng1, Cong Liu1, Junri Zhao1, Weichun Ma1, Cheng Huang2, Jingyu An2, Yin Shen2, Qingyan Fu3, Shuxiao Wang4, Dian Ding5, Wangqi Ge5, Freda Fung6, Kethural Manokaran7, Allison P. Patton7, Katherine D. Walker7, and Haidong Kan1

1Fudan University, Shanghai, China; 2Shanghai Academy of Environmental Science, China; 3Shanghai Environmental Monitoring Center, China; 4Tsinghua University, Beijing, China; 5Shanghai Urban-Rural Construction and Transportation Development Research Institute, China; 6Natural Resources Defense Council, Hong Kong, China; 7Health Effects Institute, Boston, Massachusetts, United States of America

INTRODUCTION AND BACKGROUND

Air pollution has posed a major challenge in China. Although there has been recent progress, many sources continue to contribute to air pollution in quantities that vary geographically. Some are more important than others; several previous studies have identified substantial contributions from the industrial, power generation, transportation, agricultural biomass burning, and residential sectors (Ding et al. 2019; GBD MAPS Working Group 2016). Although China’s first Action Plan for Air Pollution Prevention and Control, which was initiated in 2013 to improve air quality, led to reductions of 25% or more in the levels of PM2.5 in 2017, the annual average concentrations of PM2.5 in China were still estimated at about 53 µg/m3, well above the World Health Organization’s guidelines for healthy air (Health Effects Institute 2019). The potential implications for public health are substantial. In 2015, air pollution from all sources contributed to an estimated 1.1 million deaths in China (Cohen et al. 2017).

What This Study Adds

• This study provides a comprehensive and detailed spatial analysis of the impacts of shipping and related activities on air quality and health of the populations of the Yangtze River Delta (9-km resolution) and the city of Shanghai (1-km resolution).
• It examines emissions and health effects in a baseline year (2015, before implementation of China’s domestic emissions control areas [DECA*s]) and under three future emissions control scenarios (2030).
• Both the baseline and future analyses showed the importance for air quality and human health of controlling emissions from shipping and related activities that occur close to population centers, in particular from coastal or international ships entering inland waterways of Shanghai.
• In the Yangtze River Delta in 2015, shipping-related exposures to PM2.5 contributed to about 3,600 premature deaths from stroke, chronic obstructive pulmonary disease, ischemic heart disease, and lung cancer combined, and 270,000 hospital admissions from all causes. About a third of these deaths were in Shanghai.
• The analysis of the current policy scenario identified clear health benefits of full compliance with the current China DECA policies; the number of premature deaths relative to 2015 would be cut by half in 2030. Implementation of stricter and aspirational policy scenarios could reduce the 2015 mortality burden by substantially more (by a total of 62% and 77%, respectively). Requiring use of marine fuels with 0.1% sulfur content out to an extended emissions control area boundary of 100 nautical miles (NM) would provide the most benefit of the shipping emissions controls.

* A list of abbreviations and other terms appears at the end of this summary.
Although such national studies have typically not included the shipping sector in their analyses, a number of other studies have examined the global impacts of shipping and, more recently, their specific implications for China. Globally, air pollution from ship emissions has been estimated to contribute around 18,300 to 147,900 premature deaths primarily from the contributions to PM$_{2.5}$ of large ships traveling on international routes (Corbett et al. 2007; Partanen et al. 2013; Winebrake et al. 2009). Liu and colleagues (2016) estimated that shipping contributed 5,560 to 25,500 premature deaths in 2013 in East Asia of which about 18,000 were in mainland China. A recent global analysis estimated that 137,000 cardiovascular and lung cancer deaths globally related to ship emissions — 80% of them in Asia — could be avoided by more stringent controls, specifically by decreasing the sulfur content of marine fuel from approximately 2.7% (mass/mass) to less than 0.5% by 2020 (Sofiev et al. 2018).

The overall goal of this project was to conduct a comprehensive assessment of the current and potential future air quality and health impacts of shipping and related activities at finer spatial scales in the city of Shanghai and the broader Yangtze River Delta region than have been conducted to date (Figure ES-1). We sought to estimate the impacts of shipping prior to the implementation of Chinese DECAAs, using 2015 as a baseline year, as well as the future impacts (2030) of implementing both the latest DECA and more ambitious policies related to ships and green ports initiatives.

SCIENTIFIC APPROACH

The flow chart in Figure ES-2 provides an overview of the steps taken and the related data inputs necessary to assess the impact of ships and shipping-related activities on air pollutant emissions, ambient air quality levels, population exposures, and health burden in this study. The main steps were to:

- Develop emissions inventories for shipping and shipping-related sources in the Yangtze River Delta and Shanghai for the baseline year 2015 and projected for the year 2030 under alternative control scenarios. Emissions from non-shipping sources were obtained from existing national and regional emissions inventories.

- Simulate the impact of total and shipping-specific emissions on ambient pollutant and population-weighted PM$_{2.5}$ concentrations in the Yangtze River Delta and Shanghai using the Weather Research and Forecasting (WRF version 3.3) and Community Multiscale Air Quality (CMAQ version 4.6) modeling system (WRF-CMAQ). Simulations were conducted for 2015 and for 2030 under three alternative emissions control policies, described below.

- Estimate the health burden, defined in terms of excess numbers of deaths and hospital admissions in a given year, using the Environmental Benefits Mapping and Analysis Program-Community Edition (BenMAP-CE version 1.4), an open-source software developed by the U.S. Environmental Protection Agency (U.S. EPA 2015). We worked with Chinese scientists to identify the most appropriate studies with which to characterize the risks associated with exposures to PM$_{2.5}$ for China and to obtain the appropriate mortality and hospital admissions rates for Shanghai and the Yangtze River Delta.

EVALUATION OF ALTERNATIVE CONTROL POLICIES

We examined potential air quality and health benefits of controlling ship emissions for the Yangtze River Delta in 2030 under three alternative policy scenarios (Table ES-1). The “current” policy scenario was intended to examine the benefits of full implementation of China’s second domestic emissions control policies (DECA 2.0), first proposed in July 2018. The 0.5% sulfur fuel requirement for cruising ships under this scenario is the same as the International Maritime Organization (IMO) sulfur fuel content limit set to be implemented globally in 2020. However, to estimate the benefits of the China policy alone, we assumed that the sulfur fuel content used by vessels beyond 12 NM of shore would remain the same as it was in 2015. The second, “stricter” policy scenario assumed lower fuel sulfur content and tighter NOx controls than the current policy, but still extended to vessels only 12 NM from shore. The third, “aspirational” policy scenario extended these stricter policies to vessels 100 NM from shore; this policy scenario was more aspirational because implementation would require agreement of the IMO. Although not included in our future policy analyses, emissions from cargo transport and from port machinery were expected to decrease in the future because of upcoming low-sulfur fuel and electrification requirements.

MAIN FINDINGS

BASELINE (2015)

Our assessment of the relative contributions of total ship emissions and their impacts on average PM$_{2.5}$ concentrations in the Yangtze River Delta region at varying distances from shore emphasizes the importance of shipping activities close to shore and to population centers. We found that between about 48% and 75% of pollutant emissions from ships are released within 12 NM of shore, depending on the pollutant; over 90% are released within 96 NM. Ship emissions within 12 NM accounted for between 53% and 83% of estimated human exposure to PM$_{2.5}$ in the core cities, represented in this analysis as population-weighted PM$_{2.5}$ concentrations.

Annual population-weighted PM$_{2.5}$ concentrations from shipping sources in individual core cities of the Yangtze River Delta region ranged from 0.5 µg/m3 to 2.5 µg/m3 (average 0.93 µg/m3) (Figure ES-3), accounting for 1% to 6% of population-weighted PM$_{2.5}$ concentrations from all pollution sources. The four cities in the Yangtze River Delta with the largest contributions of population-weighted PM$_{2.5}$ from shipping sources were all coastal cities. Of these, Shanghai had the highest average ship-related population-weighted PM$_{2.5}$ concentration (2.5 µg/m3).
Figure ES-1. Map of nested study areas and delineation of inland-water area in Shanghai. Spatial resolutions for main analyses were 9 km in the Yangtze River Delta (YRD) (Domain 3) and 1 km in Shanghai (Domain 4). The inland-water area was defined by the black line shown above at the mouth of the Yangtze River; inland-water ships are defined as river ships, coastal ships, and ocean-going vessels that enter this area. (Adapted from Feng et al. 2019 [supplement]; distributed under Creative Commons Attribution 4.0 License.)
Figure ES-2. Process flowchart for estimating the impacts of emissions on air quality and health.

Table ES-1. Future Policy Scenarios

<table>
<thead>
<tr>
<th>Scenario</th>
<th>Control Area</th>
<th>Sulfur Controls</th>
<th>NOx Controls</th>
</tr>
</thead>
<tbody>
<tr>
<td>Base year (2015)</td>
<td>12 NM</td>
<td>All vessels change over to 0.5% sulfur fuel prior to entering the DECA</td>
<td>No controls on ships built before 2000 Tier I for ships constructed on or after Jan 1, 2000 Tier II for ships constructed on or after Jan 1, 2011</td>
</tr>
<tr>
<td>Current policy scenario, year 2030</td>
<td>12 NM</td>
<td>0.1% sulfur fuel at berth 0.5% sulfur fuel while cruising</td>
<td>China II for Chinese inland vessels Tier II for foreign ships</td>
</tr>
<tr>
<td>Stricter policy scenario, year 2030</td>
<td>12 NM</td>
<td>0.1% sulfur fuel</td>
<td>Tier III engines for all ships</td>
</tr>
<tr>
<td>Aspirational scenario, year 2030</td>
<td>100 NM</td>
<td>0.1% sulfur fuel</td>
<td>Tier III engines for all ships</td>
</tr>
</tbody>
</table>

NM = nautical miles

Figure ES-3. Annual average population-weighted PM$_{2.5}$ concentrations (µg/m3) in core cities in the Yangtze River Delta from (A) all air pollution sources and (B) ships. (From Feng et al. 2019; distributed under Creative Commons Attribution 4.0 License.)
The detailed analysis of ship and related emissions within the Shanghai port area (Domain 4) found that inland-water ships contributed the most to average annual population-weighted PM$_{2.5}$ concentrations (0.48 µg/m3), followed by coastal ships (0.18 µg/m3), and trucks and port machinery (0.15 µg/m3), but varied spatially (Figure ES-4). Inland-water ship contributions to population-weighted PM$_{2.5}$ concentrations were highest in Shanghai due to the combination of dense population and close proximity to the Huangpu and Yangtze rivers.

Our study finds that emissions from shipping contribute meaningfully to the burden of disease from long-term exposures to PM$_{2.5}$ (particulate matter ≤ 2.5 µm in aerodynamic diameter) in the Yangtze River Delta and in Shanghai. We estimated that in 2015 there were about 3,600 premature deaths from stroke, chronic obstructive pulmonary disease, ischemic heart disease, and lung cancer attributable to long-term exposures to air pollution from ship emissions in the Yangtze River Delta region (Figure ES-5). When considering the impact of shipping emissions from across the entire Yangtze River Delta modeling domain, long-term exposures to PM$_{2.5}$ from ships contributed to about 1,100 premature deaths in Shanghai. As the figure indicates, the results are broadly consistent with, and in proportion to, the results presented for other regions and ports, despite differences in underlying data and methods.

Short-term, daily exposures to shipping-related PM$_{2.5}$ also contribute to the health burden. In the Yangtze River Delta, these exposures contributed to an estimated 1,000 additional deaths and to over 270,000 additional hospital admissions from all causes. Within the Shanghai port domain, we estimated that about 73 additional deaths and 16,000 hospital admissions were attributable to short-term exposures to PM$_{2.5}$ from all shipping sources. The largest impacts were from ships traveling on inland waterways, with additional contributions from coastal ships, container-cargo trucks, and in-port machinery.

ANALYSIS OF FUTURE POLICY SCENARIOS

Our analysis projected that existing Chinese air quality policies for all sources are likely to reduce population exposures to PM$_{2.5}$ levels substantially in the Yangtze River Delta — from 48 µg/m3 in 2015 to about 32 µg/m3 by 2030. Only a small fraction of that change was attributable to reductions in shipping emissions. The projected contributions from shipping to population-weighted annual average PM$_{2.5}$ was 0.36 µg/m3 in the current scenario, 0.26 µg/m3 in the more stringent scenario, and 0.16 µg/m3 in the aspirational scenario (accounting for 1.1%, 0.8%, and 0.5%, respectively, of PM$_{2.5}$ from all sources).

Despite these small changes in exposure, we estimated that each of these policies could contribute to important reductions in the numbers of premature deaths attributable to shipping and related emissions in 2030 (Figure ES-6), reflecting the large numbers of people potentially exposed. The current policies were projected to reduce the health burden from stroke, chronic obstructive pulmonary disease, ischemic heart disease, and lung cancer by about half (~1,800) relative to the numbers of estimated deaths attributable to PM$_{2.5}$ in 2015. The stricter and aspirational policies were projected to reduce mortality burden further to 1,400 and 830 deaths, respectively. Ships close to shore contributed more to PM$_{2.5}$ concentrations than those farther from shore, so most of the marginal benefit to air quality and health was obtained by more stringent regulations close to shore. However, the aspirational scenario of 0.1% sulfur fuel within a 100 NM DECA would be even more effective in reducing PM$_{2.5}$ pollution and associated health impacts than maintaining the 12 NM DECA area.
CONCLUSIONS AND RECOMMENDATIONS

This study provides a comprehensive and detailed spatial analysis of the impacts of shipping and related activities on air quality and health of the populations of Shanghai and the Yangtze River Delta in a pre-DECA baseline year (2015) and under three future scenarios designed to inform decisions about the efficacy of alternative emissions control policies by 2030. It corroborates previous work and provides additional scientific evidence relevant to controlling future shipping emissions and to improving air quality in China.

Both the baseline and future analyses showed the importance of controlling emissions from shipping and related activities close to population centers. The baseline analysis indicated that 61% of
SO₂ emissions and 48% of PM₁₀ emissions from ships in the Yangtze River Delta occur within 12 NM of shore, the current demarcation for the DECA in China. However, over 90% of emissions of these pollutants from ships traveling within 200 NM of shore are released within 96 NM. Due to long distance transport and transformation of primary emissions to PM₂.₅, the influence of ship emissions on air quality and health extends far inland from the coastal cities.

Our analysis of the baseline year 2015 scenario suggested substantial air quality and health benefits of full implementation of the current DECA requirements within 12 NM of shore. The greatest benefits are expected from the more aspirational scenario which, similar to what might be required under an IMO agreement, would require the most stringent fuel sulfur requirements out to 100 NM. Further detailed evaluation of the relative contributions to air quality and health burden of inland ships — that is, ships travelling into the inland waterways of Shanghai — reinforces the importance of controlling emissions that occur in close proximity to high-density population centers like Shanghai.

Our analysis of the contributions of cargo-transport trucks and in-port activities (including ships at berth) to air quality was limited and may underestimate the impacts both for the city of Shanghai and for the Yangtze River Delta. More data are needed to more completely identify and characterize the contributions of these sources.

As our analysis assumed 100% compliance with existing and proposed regulations, the air quality and health benefits are likely to be overstated. Consequently, compliance monitoring and enforcement are a critical component of any ongoing and future policies.

Confidence in the benefits of implementing and enforcing strong regulations will come from demonstrable improvements in air quality. See for example the studies that have evaluated the effectiveness of shipping emissions regulations by measuring PM₂.₅ concentrations at nearby air quality monitoring stations (e.g., Mason et al. 2019; Zhang et al. 2019). As the estimated contributions of ships to PM₂.₅ exposures are small in both absolute and relative terms compared with other major sources of PM₂.₅, it would be advisable to ensure ongoing monitoring of air pollution components that are more reliable indicators of ship emissions (e.g., vanadium and nickel) in order to detect and evaluate the impact of any regulations. We recommend that such studies be done in Shanghai and the Yangtze River Delta to evaluate the effectiveness of the regulations at reducing air pollution over time.

ACKNOWLEDGMENTS

We thank our external advisors, Neal Fann, U.S. EPA, and Dr. Noelle Selin, Massachusetts Institute of Technology, for useful discussions and guidance in the development of the study. We are grateful to our collaborators on the Greening Ports Initiative, but in particular, Xiaoli Mao at the International Council on Clean Transportation, who provided invaluable technical and policy advice along the way, and Xin Yan at the Energy Foundation, China, who kept us all working together effectively. HEI gratefully acknowledges the Bloomberg Philanthropies (www.bloomberg.org) for financial support for this work. We also thank Lee Ann Adelsheim for research and editing assistance; Eleanne van Vliet for managing the outside review process; Mary Brennan for editing of this report; and Hope Green, Fred Howe, Hilary Selby Polk, and Ruth Shaw for their roles in preparing this Special Report for publication.

REFERENCES

ABBREVIATIONS AND OTHER TERMS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>DECA</td>
<td>Domestic Emissions Control Area (China)</td>
</tr>
<tr>
<td>GBD MAPS</td>
<td>Global Burden of Disease from Major Air Pollution Sources (initiative)</td>
</tr>
<tr>
<td>IMO</td>
<td>International Maritime Organization</td>
</tr>
<tr>
<td>NM</td>
<td>nautical miles</td>
</tr>
<tr>
<td>PM$_{2.5}$</td>
<td>particulate matter ≤ 2.5 µm in aerodynamic diameter</td>
</tr>
<tr>
<td>U.S. EPA</td>
<td>U.S. Environmental Protection Agency</td>
</tr>
<tr>
<td>WRF-CMAQ</td>
<td>Weather Research and Forecasting–Community Multiscale Air Quality modeling system</td>
</tr>
<tr>
<td>YRD</td>
<td>Yangtze River Delta</td>
</tr>
</tbody>
</table>

CONTRIBUTORS

PEER REVIEWERS

Simon Ng, Director, Policy and Research, Business Environment Council, Hong Kong, China

Hugo Denier van der Gon, Senior Scientist, Climate, Air and Sustainability, TNO (Netherlands Organisation for Applied Scientific Research), Utrecht, The Netherlands

Yuxuan Wang, Assistant Professor, Department of Earth and Atmospheric Sciences, The University of Houston, Texas, U.S.A.

Tze-wai Wong, Adjunct Professor, Division of Occupational and Environmental Health, The Jockey Club School of Public Health and Primary Care, The Chinese University of Hong Kong, China

HEI PROJECT STAFF

Katherine D. Walker, Principal Scientist

Allison P. Patton, Staff Scientist

Kethural Manokaran, Research Assistant

Lee Ann Adelsheim, Research Assistant

Kathryn Liziewski, Research Assistant

Eleanne van Vliet, Staff Scientist (peer review management)

Hilary Selby Polk, Managing Editor

Mary K. Brennan, Consulting Editor

Hope Green, Editorial Project Manager

Fred Howe, Proofreader

Ruth E. Shaw, Compositor

Publishing history: this document was posted at www.healtheffects.org in December 2019.

Citation for Executive Summary:

Citation for Special Report 22:

© 2019 Health Effects Institute, Boston, Massachusetts, U.S.A.

The entire report is available at www.healtheffects.org.

Health Effects Institute
75 Federal Street, Suite 1400, Boston, MA 02110, USA
Phone: +1-617-488-2300.